Cargando…

Boundary conditions investigation to improve computer simulation of cerebrospinal fluid dynamics in hydrocephalus patients

Three-D head geometrical models of eight healthy subjects and 11 hydrocephalus patients were built using their CINE phase-contrast MRI data and used for computer simulations under three different inlet/outlet boundary conditions (BCs). The maximum cerebrospinal fluid (CSF) pressure and the ventricul...

Descripción completa

Detalles Bibliográficos
Autores principales: Gholampour, Seifollah, Fatouraee, Nasser
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988041/
https://www.ncbi.nlm.nih.gov/pubmed/33758352
http://dx.doi.org/10.1038/s42003-021-01920-w
Descripción
Sumario:Three-D head geometrical models of eight healthy subjects and 11 hydrocephalus patients were built using their CINE phase-contrast MRI data and used for computer simulations under three different inlet/outlet boundary conditions (BCs). The maximum cerebrospinal fluid (CSF) pressure and the ventricular system volume were more effective and accurate than the other parameters in evaluating the patients’ conditions. In constant CSF pressure, the computational patient models were 18.5% more sensitive to CSF volume changes in the ventricular system under BC “C”. Pulsatile CSF flow rate diagrams were used for inlet and outlet BCs of BC “C”. BC “C” was suggested to evaluate the intracranial compliance of the hydrocephalus patients. The results suggested using the computational fluid dynamic (CFD) method and the fully coupled fluid-structure interaction (FSI) method for the CSF dynamic analysis in patients with external and internal hydrocephalus, respectively.