Cargando…

An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico

There are ~240 species of Culicidae in Mexico, of which some are vectors of arthropod-borne viruses such as Zika virus, dengue virus, chikungunya virus, and West Nile virus. Thus, the identification of mosquito feeding preferences is paramount to understanding of vector–host–pathogen interactions th...

Descripción completa

Detalles Bibliográficos
Autores principales: Hernández-Triana, Luis M., Garza-Hernández, Javier A., Ortega Morales, Aldo I., Prosser, Sean W. J., Hebert, Paul D. N., Nikolova, Nadya I., Barrero, Elsa, de Luna-Santillana, Erick de J., González-Alvarez, Vicente H., Mendez-López, Ramón, Chan-Chable, Rahuel J., Fooks, Anthony R., Rodríguez-Pérez, Mario A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988227/
https://www.ncbi.nlm.nih.gov/pubmed/33778029
http://dx.doi.org/10.3389/fvets.2020.564791
_version_ 1783668752437477376
author Hernández-Triana, Luis M.
Garza-Hernández, Javier A.
Ortega Morales, Aldo I.
Prosser, Sean W. J.
Hebert, Paul D. N.
Nikolova, Nadya I.
Barrero, Elsa
de Luna-Santillana, Erick de J.
González-Alvarez, Vicente H.
Mendez-López, Ramón
Chan-Chable, Rahuel J.
Fooks, Anthony R.
Rodríguez-Pérez, Mario A.
author_facet Hernández-Triana, Luis M.
Garza-Hernández, Javier A.
Ortega Morales, Aldo I.
Prosser, Sean W. J.
Hebert, Paul D. N.
Nikolova, Nadya I.
Barrero, Elsa
de Luna-Santillana, Erick de J.
González-Alvarez, Vicente H.
Mendez-López, Ramón
Chan-Chable, Rahuel J.
Fooks, Anthony R.
Rodríguez-Pérez, Mario A.
author_sort Hernández-Triana, Luis M.
collection PubMed
description There are ~240 species of Culicidae in Mexico, of which some are vectors of arthropod-borne viruses such as Zika virus, dengue virus, chikungunya virus, and West Nile virus. Thus, the identification of mosquito feeding preferences is paramount to understanding of vector–host–pathogen interactions that, in turn, can aid the control of disease outbreaks. Typically, DNA and RNA are extracted separately for animal (insects and blood meal hosts) and viral identification, but this study demonstrates that multiple organisms can be analyzed from a single RNA extract. For the first time, residual DNA present in standard RNA extracts was analyzed by DNA barcoding in concert with Sanger and next-generation sequencing (NGS) to identify both the mosquito species and the source of their meals in blood-fed females caught in seven sylvan communities in Chiapas State, Mexico. While mosquito molecular identification involved standard barcoding methods, the sensitivity of blood meal identification was maximized by employing short primers with NGS. In total, we collected 1,634 specimens belonging to 14 genera, 25 subgenera, and 61 morphospecies of mosquitoes. Of these, four species were new records for Mexico (Aedes guatemala, Ae. insolitus, Limatus asulleptus, Trichoprosopon pallidiventer), and nine were new records for Chiapas State. DNA barcode sequences for >300 bp of the COI gene were obtained from 291 specimens, whereas 130 bp sequences were recovered from another 179 specimens. High intraspecific divergence values (>2%) suggesting cryptic species complexes were observed in nine taxa: Anopheles eiseni (5.39%), An. pseudopunctipennis (2.79%), Ae. podographicus (4.05%), Culex eastor (4.88%), Cx. erraticus (2.28%), Toxorhynchites haemorrhoidalis (4.30%), Tr. pallidiventer (4.95%), Wyeomyia adelpha/Wy. guatemala (7.30%), and Wy. pseudopecten (4.04%). The study increased the number of mosquito species known from 128 species to 138 species for Chiapas State, and 239 for Mexico as a whole. Blood meal analysis showed that Aedes angustivittatus fed on ducks and chicken, whereas Psorophora albipes fed on humans. Culex quinquefasciatus fed on diverse hosts including chicken, human, turkey, and Mexican grackle. No arbovirus RNA was detected by reverse transcriptase–polymerase chain reaction in the surveyed specimens. This study demonstrated, for the first time, that residual DNA present in RNA blood meal extracts can be used to identify host vectors, highlighting the important role of molecular approaches in both vector identification and revealing host–vector–pathogen interactions.
format Online
Article
Text
id pubmed-7988227
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79882272021-03-25 An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico Hernández-Triana, Luis M. Garza-Hernández, Javier A. Ortega Morales, Aldo I. Prosser, Sean W. J. Hebert, Paul D. N. Nikolova, Nadya I. Barrero, Elsa de Luna-Santillana, Erick de J. González-Alvarez, Vicente H. Mendez-López, Ramón Chan-Chable, Rahuel J. Fooks, Anthony R. Rodríguez-Pérez, Mario A. Front Vet Sci Veterinary Science There are ~240 species of Culicidae in Mexico, of which some are vectors of arthropod-borne viruses such as Zika virus, dengue virus, chikungunya virus, and West Nile virus. Thus, the identification of mosquito feeding preferences is paramount to understanding of vector–host–pathogen interactions that, in turn, can aid the control of disease outbreaks. Typically, DNA and RNA are extracted separately for animal (insects and blood meal hosts) and viral identification, but this study demonstrates that multiple organisms can be analyzed from a single RNA extract. For the first time, residual DNA present in standard RNA extracts was analyzed by DNA barcoding in concert with Sanger and next-generation sequencing (NGS) to identify both the mosquito species and the source of their meals in blood-fed females caught in seven sylvan communities in Chiapas State, Mexico. While mosquito molecular identification involved standard barcoding methods, the sensitivity of blood meal identification was maximized by employing short primers with NGS. In total, we collected 1,634 specimens belonging to 14 genera, 25 subgenera, and 61 morphospecies of mosquitoes. Of these, four species were new records for Mexico (Aedes guatemala, Ae. insolitus, Limatus asulleptus, Trichoprosopon pallidiventer), and nine were new records for Chiapas State. DNA barcode sequences for >300 bp of the COI gene were obtained from 291 specimens, whereas 130 bp sequences were recovered from another 179 specimens. High intraspecific divergence values (>2%) suggesting cryptic species complexes were observed in nine taxa: Anopheles eiseni (5.39%), An. pseudopunctipennis (2.79%), Ae. podographicus (4.05%), Culex eastor (4.88%), Cx. erraticus (2.28%), Toxorhynchites haemorrhoidalis (4.30%), Tr. pallidiventer (4.95%), Wyeomyia adelpha/Wy. guatemala (7.30%), and Wy. pseudopecten (4.04%). The study increased the number of mosquito species known from 128 species to 138 species for Chiapas State, and 239 for Mexico as a whole. Blood meal analysis showed that Aedes angustivittatus fed on ducks and chicken, whereas Psorophora albipes fed on humans. Culex quinquefasciatus fed on diverse hosts including chicken, human, turkey, and Mexican grackle. No arbovirus RNA was detected by reverse transcriptase–polymerase chain reaction in the surveyed specimens. This study demonstrated, for the first time, that residual DNA present in RNA blood meal extracts can be used to identify host vectors, highlighting the important role of molecular approaches in both vector identification and revealing host–vector–pathogen interactions. Frontiers Media S.A. 2021-03-10 /pmc/articles/PMC7988227/ /pubmed/33778029 http://dx.doi.org/10.3389/fvets.2020.564791 Text en Copyright © 2021 Hernández-Triana, Garza-Hernández, Ortega Morales, Prosser, Hebert, Nikolova, Barrero, de Luna-Santillana, González-Alvarez, Mendez-López, Chan-Chable, Fooks and Rodríguez-Pérez. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Veterinary Science
Hernández-Triana, Luis M.
Garza-Hernández, Javier A.
Ortega Morales, Aldo I.
Prosser, Sean W. J.
Hebert, Paul D. N.
Nikolova, Nadya I.
Barrero, Elsa
de Luna-Santillana, Erick de J.
González-Alvarez, Vicente H.
Mendez-López, Ramón
Chan-Chable, Rahuel J.
Fooks, Anthony R.
Rodríguez-Pérez, Mario A.
An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title_full An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title_fullStr An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title_full_unstemmed An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title_short An Integrated Molecular Approach to Untangling Host–Vector–Pathogen Interactions in Mosquitoes (Diptera: Culicidae) From Sylvan Communities in Mexico
title_sort integrated molecular approach to untangling host–vector–pathogen interactions in mosquitoes (diptera: culicidae) from sylvan communities in mexico
topic Veterinary Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988227/
https://www.ncbi.nlm.nih.gov/pubmed/33778029
http://dx.doi.org/10.3389/fvets.2020.564791
work_keys_str_mv AT hernandeztrianaluism anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT garzahernandezjaviera anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT ortegamoralesaldoi anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT prosserseanwj anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT hebertpauldn anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT nikolovanadyai anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT barreroelsa anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT delunasantillanaerickdej anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT gonzalezalvarezvicenteh anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT mendezlopezramon anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT chanchablerahuelj anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT fooksanthonyr anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT rodriguezperezmarioa anintegratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT hernandeztrianaluism integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT garzahernandezjaviera integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT ortegamoralesaldoi integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT prosserseanwj integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT hebertpauldn integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT nikolovanadyai integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT barreroelsa integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT delunasantillanaerickdej integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT gonzalezalvarezvicenteh integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT mendezlopezramon integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT chanchablerahuelj integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT fooksanthonyr integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico
AT rodriguezperezmarioa integratedmolecularapproachtountanglinghostvectorpathogeninteractionsinmosquitoesdipteraculicidaefromsylvancommunitiesinmexico