Cargando…
Manganese-Mediated C–C Bond Formation: Alkoxycarbonylation of Organoboranes
[Image: see text] Alkoxycarbonylations are important and versatile reactions that result in the formation of a new C–C bond. Herein, we report on a new and halide-free alkoxycarbonylation reaction that does not require the application of an external carbon monoxide atmosphere. Instead, manganese car...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988452/ https://www.ncbi.nlm.nih.gov/pubmed/33776185 http://dx.doi.org/10.1021/acs.organomet.0c00781 |
Sumario: | [Image: see text] Alkoxycarbonylations are important and versatile reactions that result in the formation of a new C–C bond. Herein, we report on a new and halide-free alkoxycarbonylation reaction that does not require the application of an external carbon monoxide atmosphere. Instead, manganese carbonyl complexes and organo(alkoxy)borate salts react to form an ester product containing the target C–C bond. The required organo(alkoxy)borate salts are conveniently generated from the stoichiometric reaction of an organoborane and an alkoxide salt and can be telescoped without purification. The protocol leads to the formation of both aromatic and aliphatic esters and gives complete control over the ester’s substitution (e.g., OMe, O(t)Bu, OPh). A reaction mechanism was proposed on the basis of stoichiometric reactivity studies, spectroscopy, and DFT calculations. The new chemistry is particularly relevant for the field of Mn(I) catalysis and clearly points to a potential pathway toward irreversible catalyst deactivation. |
---|