Cargando…

Structure and function of DEAH-box helicase 32 and its role in cancer

DEAH-box helicase 32 (DHX32) is an RNA helicase with unique structural characteristics that is involved in numerous biological processes associated with RNA, including ribosome biosynthesis, transcription, mRNA splicing and translation. Increasing evidence suggests that abnormal DHX32 expression con...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Qingchun, Geng, Jinting, Chen, Yongquan, Lin, Huayue, Wang, Jiajia, Fang, Zanxi, Wang, Fen, Zhang, Zhongying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988694/
https://www.ncbi.nlm.nih.gov/pubmed/33777205
http://dx.doi.org/10.3892/ol.2021.12643
Descripción
Sumario:DEAH-box helicase 32 (DHX32) is an RNA helicase with unique structural characteristics that is involved in numerous biological processes associated with RNA, including ribosome biosynthesis, transcription, mRNA splicing and translation. Increasing evidence suggests that abnormal DHX32 expression contributes to cancer initiation and development, due to dysregulated cell proliferation, differentiation, apoptosis and other processes. In the current review, the discovery, structure and function of DHX32, as well as the association between abnormal DHX32 expression and tumors are discussed. DHX32 expression is downregulated in acute lymphoblastic leukemia, but upregulated in solid tumors, including colorectal and breast cancer. Furthermore, DHX32 expression levels are associated with the pathological and clinical features of the cancer. Therefore, DHX32 may serve as a novel liquid biopsy marker for auxiliary diagnosis and prognosis screening, as well as a possible target for cancer therapy. The molecular mechanism underlying the contribution of DHX32 towards the initiation and development of cancer requires further investigation for the development of anticancer treatments based on manipulating DHX32 expression and function.