Cargando…
USP22 promotes melanoma and BRAF inhibitor resistance via YAP stabilization
Yes-associated protein (YAP) is a conserved transcriptional coactivator that plays key roles in controlling organ size, tumorigenesis and drug resistance. Emerging evidence shows that YAP is overexpressed and associated with resistance to BRAF inhibitor treatment in melanoma. However, the mechanism...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988733/ https://www.ncbi.nlm.nih.gov/pubmed/33777217 http://dx.doi.org/10.3892/ol.2021.12655 |
Sumario: | Yes-associated protein (YAP) is a conserved transcriptional coactivator that plays key roles in controlling organ size, tumorigenesis and drug resistance. Emerging evidence shows that YAP is overexpressed and associated with resistance to BRAF inhibitor treatment in melanoma. However, the mechanism accounting for YAP-overexpression in melanoma is largely unknown. The present study characterized ubiquitin-specific peptidase 22 (USP22) as a deubiquitinase controlling YAP abundance and biological functions in melanoma. Using western blotting and immunohistochemical staining, it was found that the expression of USP22 and YAP was associated in melanoma cell lines and patient samples. Moreover, USP22 interacted with and deubiquitinated YAP to prevent YAP turnover. Depletion of USP22 decreased YAP expression, which in turn suppressed cell proliferation and tumorigenesis. Furthermore, overexpression of USP22 conferred vemurafenib resistance in a YAP-dependent manner. Overall, the present study revealed the important role of the USP22/YAP axis in melanoma and BRAF inhibitor resistance, and provides a rationale to target USP22/YAP for melanoma treatment. |
---|