Cargando…
Predicting amyloid risk by machine learning algorithms based on the A4 screen data: Application to the Japanese Trial‐Ready Cohort study
BACKGROUND: Selecting cognitively normal elderly individuals with higher risk of brain amyloid deposition is critical to the success of prevention trials for Alzheimer's disease (AD). METHODS: Based on the Anti‐Amyloid Treatment in Asymptomatic Alzheimer's Disease study data, we built mach...
Autores principales: | Sato, Kenichiro, Ihara, Ryoko, Suzuki, Kazushi, Niimi, Yoshiki, Toda, Tatsushi, Jimenez‐Maggiora, Gustavo, Langford, Oliver, Donohue, Michael C., Raman, Rema, Aisen, Paul S., Sperling, Reisa A., Iwata, Atsushi, Iwatsubo, Takeshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988864/ https://www.ncbi.nlm.nih.gov/pubmed/33778148 http://dx.doi.org/10.1002/trc2.12135 |
Ejemplares similares
-
Efficacy and Cost-effectiveness of Promotion Methods to Recruit Participants to an Online Screening Registry for Alzheimer Disease Prevention Trials: Observational Study
por: Sato, Kenichiro, et al.
Publicado: (2021) -
Facial nerve palsy following the administration of COVID-19 mRNA vaccines: analysis of a self-reporting database
por: Sato, Kenichiro, et al.
Publicado: (2021) -
Clinical and cognitive characteristics of preclinical Alzheimer's disease in the Japanese Alzheimer's Disease Neuroimaging Initiative cohort
por: Ihara, Ryoko, et al.
Publicado: (2018) -
Attempt to Predict A/T/N-Based Alzheimer’s Disease Cerebrospinal Fluid Biomarkers Using a Peripheral Blood DNA Methylation Clock
por: Sato, Kenichiro, et al.
Publicado: (2020) -
Predicting Amyloid Burden to Accelerate Recruitment of Secondary Prevention Clinical Trials
por: Langford, O., et al.
Publicado: (2020)