Cargando…

A Random Forest Model for Predicting Social Functional Improvement in Chinese Patients with Schizophrenia After 3 Months of Atypical Antipsychotic Monopharmacy: A Cohort Study

PURPOSE: Impaired social functions contribute to the burden of schizophrenia patients and their families, but predictive tools of social functioning prognosis and specific factors are undefined in Chinese clinical practice. This article explores a machine learning tool to identify whether patients w...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yange, Zhang, Lei, Zhang, Yan, Wen, Hui, Huang, Jingjing, Shen, Yifeng, Li, Huafang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989048/
https://www.ncbi.nlm.nih.gov/pubmed/33776440
http://dx.doi.org/10.2147/NDT.S280757
_version_ 1783668883734921216
author Li, Yange
Zhang, Lei
Zhang, Yan
Wen, Hui
Huang, Jingjing
Shen, Yifeng
Li, Huafang
author_facet Li, Yange
Zhang, Lei
Zhang, Yan
Wen, Hui
Huang, Jingjing
Shen, Yifeng
Li, Huafang
author_sort Li, Yange
collection PubMed
description PURPOSE: Impaired social functions contribute to the burden of schizophrenia patients and their families, but predictive tools of social functioning prognosis and specific factors are undefined in Chinese clinical practice. This article explores a machine learning tool to identify whether patients will achieve significant social functional improvement after 3 months of atypical antipsychotic monopharmacy and finds the defined risk factors using a multicenter clinical study. PATIENTS AND METHODS: A multicenter study on atypical antipsychotic (AAP) treatment in Chinese patients with schizophrenia (SALT-C) was conducted from July 2011 to August 2018. Data from 550 patients with AAP monopharmacy from their baseline to their 3-month follow-up were used to establish machine learning tools after screening. The positive outcome was an increase in the Personal and Social Performance (PSP) scale score by ≥10 points. The predictors were a range of investigator-rated assessments on symptoms, functioning, the safety of AAPs and illness history. The Least Absolute Shrinkage and Selection Operator (LASSO) was used for the feature screening and ranking of the predicted variables. The random forest algorithm and five-fold cross-validation for optimizing the model were selected to ensure the generalizability and precision. RESULTS: There were 137 patients (mean [SD] age, 41.1 [16.8] years; 77 [58.8%] female) who had a good social functional prognosis. A lower PSP score, taking a mood stabilizer, a high total Positive and Negative Symptom Scale (PANSS) and PANSS general subscale score, unemployment, a hepatic injury with medication, comorbid cardiovascular disease and being male predicted poor PSP outcomes. The generalizability of the PSP predictive tool was estimated with the precision–recall curve (accuracy of 79.5%, negative predictive value of 92.6% and positive predictive value of 57.1%) and receiver operating characteristic curve (ROC) (specificity of 81.8% and sensitivity of 78.7%). CONCLUSION: The machine learning tool established using our current real-world data could assist in predicting PSP outcome by several clinical factors.
format Online
Article
Text
id pubmed-7989048
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-79890482021-03-25 A Random Forest Model for Predicting Social Functional Improvement in Chinese Patients with Schizophrenia After 3 Months of Atypical Antipsychotic Monopharmacy: A Cohort Study Li, Yange Zhang, Lei Zhang, Yan Wen, Hui Huang, Jingjing Shen, Yifeng Li, Huafang Neuropsychiatr Dis Treat Original Research PURPOSE: Impaired social functions contribute to the burden of schizophrenia patients and their families, but predictive tools of social functioning prognosis and specific factors are undefined in Chinese clinical practice. This article explores a machine learning tool to identify whether patients will achieve significant social functional improvement after 3 months of atypical antipsychotic monopharmacy and finds the defined risk factors using a multicenter clinical study. PATIENTS AND METHODS: A multicenter study on atypical antipsychotic (AAP) treatment in Chinese patients with schizophrenia (SALT-C) was conducted from July 2011 to August 2018. Data from 550 patients with AAP monopharmacy from their baseline to their 3-month follow-up were used to establish machine learning tools after screening. The positive outcome was an increase in the Personal and Social Performance (PSP) scale score by ≥10 points. The predictors were a range of investigator-rated assessments on symptoms, functioning, the safety of AAPs and illness history. The Least Absolute Shrinkage and Selection Operator (LASSO) was used for the feature screening and ranking of the predicted variables. The random forest algorithm and five-fold cross-validation for optimizing the model were selected to ensure the generalizability and precision. RESULTS: There were 137 patients (mean [SD] age, 41.1 [16.8] years; 77 [58.8%] female) who had a good social functional prognosis. A lower PSP score, taking a mood stabilizer, a high total Positive and Negative Symptom Scale (PANSS) and PANSS general subscale score, unemployment, a hepatic injury with medication, comorbid cardiovascular disease and being male predicted poor PSP outcomes. The generalizability of the PSP predictive tool was estimated with the precision–recall curve (accuracy of 79.5%, negative predictive value of 92.6% and positive predictive value of 57.1%) and receiver operating characteristic curve (ROC) (specificity of 81.8% and sensitivity of 78.7%). CONCLUSION: The machine learning tool established using our current real-world data could assist in predicting PSP outcome by several clinical factors. Dove 2021-03-19 /pmc/articles/PMC7989048/ /pubmed/33776440 http://dx.doi.org/10.2147/NDT.S280757 Text en © 2021 Li et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Li, Yange
Zhang, Lei
Zhang, Yan
Wen, Hui
Huang, Jingjing
Shen, Yifeng
Li, Huafang
A Random Forest Model for Predicting Social Functional Improvement in Chinese Patients with Schizophrenia After 3 Months of Atypical Antipsychotic Monopharmacy: A Cohort Study
title A Random Forest Model for Predicting Social Functional Improvement in Chinese Patients with Schizophrenia After 3 Months of Atypical Antipsychotic Monopharmacy: A Cohort Study
title_full A Random Forest Model for Predicting Social Functional Improvement in Chinese Patients with Schizophrenia After 3 Months of Atypical Antipsychotic Monopharmacy: A Cohort Study
title_fullStr A Random Forest Model for Predicting Social Functional Improvement in Chinese Patients with Schizophrenia After 3 Months of Atypical Antipsychotic Monopharmacy: A Cohort Study
title_full_unstemmed A Random Forest Model for Predicting Social Functional Improvement in Chinese Patients with Schizophrenia After 3 Months of Atypical Antipsychotic Monopharmacy: A Cohort Study
title_short A Random Forest Model for Predicting Social Functional Improvement in Chinese Patients with Schizophrenia After 3 Months of Atypical Antipsychotic Monopharmacy: A Cohort Study
title_sort random forest model for predicting social functional improvement in chinese patients with schizophrenia after 3 months of atypical antipsychotic monopharmacy: a cohort study
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989048/
https://www.ncbi.nlm.nih.gov/pubmed/33776440
http://dx.doi.org/10.2147/NDT.S280757
work_keys_str_mv AT liyange arandomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT zhanglei arandomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT zhangyan arandomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT wenhui arandomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT huangjingjing arandomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT shenyifeng arandomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT lihuafang arandomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT liyange randomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT zhanglei randomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT zhangyan randomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT wenhui randomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT huangjingjing randomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT shenyifeng randomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy
AT lihuafang randomforestmodelforpredictingsocialfunctionalimprovementinchinesepatientswithschizophreniaafter3monthsofatypicalantipsychoticmonopharmacyacohortstudy