Cargando…
Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes
BACKGROUND: Yamuna, a major tributary of Ganga, which flows through the national capital region of Delhi, is among the major polluted rivers in India. The accumulation of various effluents, toxic chemicals, heavy metals, and increased organic load in the Yamuna directly affects the organisms that th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989817/ https://www.ncbi.nlm.nih.gov/pubmed/33902720 http://dx.doi.org/10.1186/s40793-019-0345-3 |
_version_ | 1783668990442209280 |
---|---|
author | Mittal, Parul Prasoodanan PK, Vishnu Dhakan, Darshan B. Kumar, Sanjiv Sharma, Vineet K. |
author_facet | Mittal, Parul Prasoodanan PK, Vishnu Dhakan, Darshan B. Kumar, Sanjiv Sharma, Vineet K. |
author_sort | Mittal, Parul |
collection | PubMed |
description | BACKGROUND: Yamuna, a major tributary of Ganga, which flows through the national capital region of Delhi, is among the major polluted rivers in India. The accumulation of various effluents, toxic chemicals, heavy metals, and increased organic load in the Yamuna directly affects the organisms that thrive inside or around this river. It also makes it an ideal site for studying the impact of pollution on the river microflora, which are sentinels of the water quality. RESULTS: In this study, the microbial community structure and functional diversity of the Yamuna river water was assessed from the New Delhi region. The community structure of Yamuna during pre-monsoon (June) was found to be significantly different from the post-monsoon (November) time, with Acinetobacter being the most abundant genus during June, and Aeromonas during November. The functional characterization revealed the higher abundance of Methyl-accepting chemotaxis protein in the river water, which could be important for the microbial chemosensory adaptation in the environment. A higher abundance of genes related to nitrogen and sulfur metabolism, metal tolerance, and xenobiotic degradation, and complete degradation pathways of aromatic compounds such as toluene, xylene, benzene and phenol were identified. Further, the results showed the presence of a pool of antibiotic resistance genes in the bacterial microbiome in the Yamuna alongside a large number of broad-spectrum antibiotics, such as carbapenemases and metallo-β-lactamases. Efflux mechanism of resistance was found to dominate among these microbes conferring multi-drug resistance. The Principal Coordinate Analysis of the taxonomic composition of the Yamuna River water with publicly available freshwater and sewage datasets revealed significant differences in the two Yamuna samples and a greater resemblance of pre-monsoon Yamuna sample to sewage sample owing to the higher pollution levels in Yamuna in the pre-monsoon time. CONCLUSION: The metagenomic study of the Yamuna river provides the first insights on the bacterial microbiome composition of this large polluted river, and also helps to understand the dynamics in the community structure and functions due to seasonal variations. The presence of antibiotic resistance genes and functional insights on the metabolic potential of a polluted river microbiome are likely to have several applications in health, biotechnology and bioremediation. |
format | Online Article Text |
id | pubmed-7989817 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-79898172021-03-31 Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes Mittal, Parul Prasoodanan PK, Vishnu Dhakan, Darshan B. Kumar, Sanjiv Sharma, Vineet K. Environ Microbiome Research Article BACKGROUND: Yamuna, a major tributary of Ganga, which flows through the national capital region of Delhi, is among the major polluted rivers in India. The accumulation of various effluents, toxic chemicals, heavy metals, and increased organic load in the Yamuna directly affects the organisms that thrive inside or around this river. It also makes it an ideal site for studying the impact of pollution on the river microflora, which are sentinels of the water quality. RESULTS: In this study, the microbial community structure and functional diversity of the Yamuna river water was assessed from the New Delhi region. The community structure of Yamuna during pre-monsoon (June) was found to be significantly different from the post-monsoon (November) time, with Acinetobacter being the most abundant genus during June, and Aeromonas during November. The functional characterization revealed the higher abundance of Methyl-accepting chemotaxis protein in the river water, which could be important for the microbial chemosensory adaptation in the environment. A higher abundance of genes related to nitrogen and sulfur metabolism, metal tolerance, and xenobiotic degradation, and complete degradation pathways of aromatic compounds such as toluene, xylene, benzene and phenol were identified. Further, the results showed the presence of a pool of antibiotic resistance genes in the bacterial microbiome in the Yamuna alongside a large number of broad-spectrum antibiotics, such as carbapenemases and metallo-β-lactamases. Efflux mechanism of resistance was found to dominate among these microbes conferring multi-drug resistance. The Principal Coordinate Analysis of the taxonomic composition of the Yamuna River water with publicly available freshwater and sewage datasets revealed significant differences in the two Yamuna samples and a greater resemblance of pre-monsoon Yamuna sample to sewage sample owing to the higher pollution levels in Yamuna in the pre-monsoon time. CONCLUSION: The metagenomic study of the Yamuna river provides the first insights on the bacterial microbiome composition of this large polluted river, and also helps to understand the dynamics in the community structure and functions due to seasonal variations. The presence of antibiotic resistance genes and functional insights on the metabolic potential of a polluted river microbiome are likely to have several applications in health, biotechnology and bioremediation. BioMed Central 2019-09-18 /pmc/articles/PMC7989817/ /pubmed/33902720 http://dx.doi.org/10.1186/s40793-019-0345-3 Text en © The Author(s). 2019 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Mittal, Parul Prasoodanan PK, Vishnu Dhakan, Darshan B. Kumar, Sanjiv Sharma, Vineet K. Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes |
title | Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes |
title_full | Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes |
title_fullStr | Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes |
title_full_unstemmed | Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes |
title_short | Metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes |
title_sort | metagenome of a polluted river reveals a reservoir of metabolic and antibiotic resistance genes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989817/ https://www.ncbi.nlm.nih.gov/pubmed/33902720 http://dx.doi.org/10.1186/s40793-019-0345-3 |
work_keys_str_mv | AT mittalparul metagenomeofapollutedriverrevealsareservoirofmetabolicandantibioticresistancegenes AT prasoodananpkvishnu metagenomeofapollutedriverrevealsareservoirofmetabolicandantibioticresistancegenes AT dhakandarshanb metagenomeofapollutedriverrevealsareservoirofmetabolicandantibioticresistancegenes AT kumarsanjiv metagenomeofapollutedriverrevealsareservoirofmetabolicandantibioticresistancegenes AT sharmavineetk metagenomeofapollutedriverrevealsareservoirofmetabolicandantibioticresistancegenes |