Cargando…

Analytical cryptanalysis upon N = p(2)q utilizing Jochemsz-May strategy

This paper presents a cryptanalytic approach on the variants of the RSA which utilizes the modulus N = p(2)q where p and q are balanced large primes. Suppose [Image: see text] satisfying gcd(e, ϕ(N)) = 1 where ϕ(N) = p(p − 1)(q − 1) and d < N(δ) be its multiplicative inverse. From ed − kϕ(N) = 1,...

Descripción completa

Detalles Bibliográficos
Autores principales: Adenan, Nurul Nur Hanisah, Kamel Ariffin, Muhammad Rezal, Yunos, Faridah, Sapar, Siti Hasana, Asbullah, Muhammad Asyraf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990206/
https://www.ncbi.nlm.nih.gov/pubmed/33760865
http://dx.doi.org/10.1371/journal.pone.0248888
_version_ 1783669033908830208
author Adenan, Nurul Nur Hanisah
Kamel Ariffin, Muhammad Rezal
Yunos, Faridah
Sapar, Siti Hasana
Asbullah, Muhammad Asyraf
author_facet Adenan, Nurul Nur Hanisah
Kamel Ariffin, Muhammad Rezal
Yunos, Faridah
Sapar, Siti Hasana
Asbullah, Muhammad Asyraf
author_sort Adenan, Nurul Nur Hanisah
collection PubMed
description This paper presents a cryptanalytic approach on the variants of the RSA which utilizes the modulus N = p(2)q where p and q are balanced large primes. Suppose [Image: see text] satisfying gcd(e, ϕ(N)) = 1 where ϕ(N) = p(p − 1)(q − 1) and d < N(δ) be its multiplicative inverse. From ed − kϕ(N) = 1, by utilizing the extended strategy of Jochemsz and May, our attack works when the primes share a known amount of Least Significant Bits(LSBs). This is achievable since we obtain the small roots of our specially constructed integer polynomial which leads to the factorization of N. More specifically we show that N can be factored when the bound [Image: see text] . Our attack enhances the bound of some former attacks upon N = p(2)q.
format Online
Article
Text
id pubmed-7990206
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-79902062021-04-05 Analytical cryptanalysis upon N = p(2)q utilizing Jochemsz-May strategy Adenan, Nurul Nur Hanisah Kamel Ariffin, Muhammad Rezal Yunos, Faridah Sapar, Siti Hasana Asbullah, Muhammad Asyraf PLoS One Research Article This paper presents a cryptanalytic approach on the variants of the RSA which utilizes the modulus N = p(2)q where p and q are balanced large primes. Suppose [Image: see text] satisfying gcd(e, ϕ(N)) = 1 where ϕ(N) = p(p − 1)(q − 1) and d < N(δ) be its multiplicative inverse. From ed − kϕ(N) = 1, by utilizing the extended strategy of Jochemsz and May, our attack works when the primes share a known amount of Least Significant Bits(LSBs). This is achievable since we obtain the small roots of our specially constructed integer polynomial which leads to the factorization of N. More specifically we show that N can be factored when the bound [Image: see text] . Our attack enhances the bound of some former attacks upon N = p(2)q. Public Library of Science 2021-03-24 /pmc/articles/PMC7990206/ /pubmed/33760865 http://dx.doi.org/10.1371/journal.pone.0248888 Text en © 2021 Adenan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Adenan, Nurul Nur Hanisah
Kamel Ariffin, Muhammad Rezal
Yunos, Faridah
Sapar, Siti Hasana
Asbullah, Muhammad Asyraf
Analytical cryptanalysis upon N = p(2)q utilizing Jochemsz-May strategy
title Analytical cryptanalysis upon N = p(2)q utilizing Jochemsz-May strategy
title_full Analytical cryptanalysis upon N = p(2)q utilizing Jochemsz-May strategy
title_fullStr Analytical cryptanalysis upon N = p(2)q utilizing Jochemsz-May strategy
title_full_unstemmed Analytical cryptanalysis upon N = p(2)q utilizing Jochemsz-May strategy
title_short Analytical cryptanalysis upon N = p(2)q utilizing Jochemsz-May strategy
title_sort analytical cryptanalysis upon n = p(2)q utilizing jochemsz-may strategy
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990206/
https://www.ncbi.nlm.nih.gov/pubmed/33760865
http://dx.doi.org/10.1371/journal.pone.0248888
work_keys_str_mv AT adenannurulnurhanisah analyticalcryptanalysisuponnp2qutilizingjochemszmaystrategy
AT kamelariffinmuhammadrezal analyticalcryptanalysisuponnp2qutilizingjochemszmaystrategy
AT yunosfaridah analyticalcryptanalysisuponnp2qutilizingjochemszmaystrategy
AT saparsitihasana analyticalcryptanalysisuponnp2qutilizingjochemszmaystrategy
AT asbullahmuhammadasyraf analyticalcryptanalysisuponnp2qutilizingjochemszmaystrategy