Cargando…
Automatic Subtyping of Individuals with Primary Progressive Aphasia
BACKGROUND: The classification of patients with primary progressive aphasia (PPA) into variants is time-consuming, costly, and requires combined expertise by clinical neurologists, neuropsychologists, speech pathologists, and radiologists. OBJECTIVE: The aim of the present study is to determine whet...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990416/ https://www.ncbi.nlm.nih.gov/pubmed/33427742 http://dx.doi.org/10.3233/JAD-201101 |
_version_ | 1783669068057804800 |
---|---|
author | Themistocleous, Charalambos Ficek, Bronte Webster, Kimberly den Ouden, Dirk-Bart Hillis, Argye E. Tsapkini, Kyrana |
author_facet | Themistocleous, Charalambos Ficek, Bronte Webster, Kimberly den Ouden, Dirk-Bart Hillis, Argye E. Tsapkini, Kyrana |
author_sort | Themistocleous, Charalambos |
collection | PubMed |
description | BACKGROUND: The classification of patients with primary progressive aphasia (PPA) into variants is time-consuming, costly, and requires combined expertise by clinical neurologists, neuropsychologists, speech pathologists, and radiologists. OBJECTIVE: The aim of the present study is to determine whether acoustic and linguistic variables provide accurate classification of PPA patients into one of three variants: nonfluent PPA, semantic PPA, and logopenic PPA. METHODS: In this paper, we present a machine learning model based on deep neural networks (DNN) for the subtyping of patients with PPA into three main variants, using combined acoustic and linguistic information elicited automatically via acoustic and linguistic analysis. The performance of the DNN was compared to the classification accuracy of Random Forests, Support Vector Machines, and Decision Trees, as well as to expert clinicians’ classifications. RESULTS: The DNN model outperformed the other machine learning models as well as expert clinicians’ classifications with 80% classification accuracy. Importantly, 90% of patients with nfvPPA and 95% of patients with lvPPA was identified correctly, providing reliable subtyping of these patients into their corresponding PPA variants. CONCLUSION: We show that the combined speech and language markers from connected speech productions can inform variant subtyping in patients with PPA. The end-to-end automated machine learning approach we present can enable clinicians and researchers to provide an easy, quick, and inexpensive classification of patients with PPA. |
format | Online Article Text |
id | pubmed-7990416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | IOS Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-79904162021-04-02 Automatic Subtyping of Individuals with Primary Progressive Aphasia Themistocleous, Charalambos Ficek, Bronte Webster, Kimberly den Ouden, Dirk-Bart Hillis, Argye E. Tsapkini, Kyrana J Alzheimers Dis Research Article BACKGROUND: The classification of patients with primary progressive aphasia (PPA) into variants is time-consuming, costly, and requires combined expertise by clinical neurologists, neuropsychologists, speech pathologists, and radiologists. OBJECTIVE: The aim of the present study is to determine whether acoustic and linguistic variables provide accurate classification of PPA patients into one of three variants: nonfluent PPA, semantic PPA, and logopenic PPA. METHODS: In this paper, we present a machine learning model based on deep neural networks (DNN) for the subtyping of patients with PPA into three main variants, using combined acoustic and linguistic information elicited automatically via acoustic and linguistic analysis. The performance of the DNN was compared to the classification accuracy of Random Forests, Support Vector Machines, and Decision Trees, as well as to expert clinicians’ classifications. RESULTS: The DNN model outperformed the other machine learning models as well as expert clinicians’ classifications with 80% classification accuracy. Importantly, 90% of patients with nfvPPA and 95% of patients with lvPPA was identified correctly, providing reliable subtyping of these patients into their corresponding PPA variants. CONCLUSION: We show that the combined speech and language markers from connected speech productions can inform variant subtyping in patients with PPA. The end-to-end automated machine learning approach we present can enable clinicians and researchers to provide an easy, quick, and inexpensive classification of patients with PPA. IOS Press 2021-02-02 /pmc/articles/PMC7990416/ /pubmed/33427742 http://dx.doi.org/10.3233/JAD-201101 Text en © 2021 – The authors. Published by IOS Press https://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/) , which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Themistocleous, Charalambos Ficek, Bronte Webster, Kimberly den Ouden, Dirk-Bart Hillis, Argye E. Tsapkini, Kyrana Automatic Subtyping of Individuals with Primary Progressive Aphasia |
title | Automatic Subtyping of Individuals with Primary Progressive Aphasia |
title_full | Automatic Subtyping of Individuals with Primary Progressive Aphasia |
title_fullStr | Automatic Subtyping of Individuals with Primary Progressive Aphasia |
title_full_unstemmed | Automatic Subtyping of Individuals with Primary Progressive Aphasia |
title_short | Automatic Subtyping of Individuals with Primary Progressive Aphasia |
title_sort | automatic subtyping of individuals with primary progressive aphasia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990416/ https://www.ncbi.nlm.nih.gov/pubmed/33427742 http://dx.doi.org/10.3233/JAD-201101 |
work_keys_str_mv | AT themistocleouscharalambos automaticsubtypingofindividualswithprimaryprogressiveaphasia AT ficekbronte automaticsubtypingofindividualswithprimaryprogressiveaphasia AT websterkimberly automaticsubtypingofindividualswithprimaryprogressiveaphasia AT denoudendirkbart automaticsubtypingofindividualswithprimaryprogressiveaphasia AT hillisargyee automaticsubtypingofindividualswithprimaryprogressiveaphasia AT tsapkinikyrana automaticsubtypingofindividualswithprimaryprogressiveaphasia |