Cargando…
COVID-19 diagnosis from chest X-ray images using transfer learning: Enhanced performance by debiasing dataloader
BACKGROUND: Chest X-ray imaging has been proved as a powerful diagnostic method to detect and diagnose COVID-19 cases due to its easy accessibility, lower cost and rapid imaging time. OBJECTIVE: This study aims to improve efficacy of screening COVID-19 infected patients using chest X-ray images with...
Autores principales: | Polat, Çağín, Karaman, Onur, Karaman, Ceren, Korkmaz, Güney, Balcı, Mehmet Can, Kelek, Sevim Ercan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990426/ https://www.ncbi.nlm.nih.gov/pubmed/33459685 http://dx.doi.org/10.3233/XST-200757 |
Ejemplares similares
-
Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images
por: Alhudhaif, Adi, et al.
Publicado: (2021) -
Development of Debiasing Technique for Lung Nodule Chest X-ray Datasets to Generalize Deep Learning Models
por: Horry, Michael J., et al.
Publicado: (2023) -
MWCNT/Ruthenium hydroxide aerogel supercapacitor production and investigation of electrochemical performances
por: Korkmaz, Satiye, et al.
Publicado: (2022) -
Sensitive sandwich-type electrochemical SARS-CoV‑2 nucleocapsid protein immunosensor
por: Karaman, Ceren, et al.
Publicado: (2021) -
Cognitive debiasing 1: origins of bias and theory of debiasing
por: Croskerry, Pat, et al.
Publicado: (2013)