Cargando…
From biomechanics to pathology: predicting axonal injury from patterns of strain after traumatic brain injury
The relationship between biomechanical forces and neuropathology is key to understanding traumatic brain injury. White matter tracts are damaged by high shear forces during impact, resulting in axonal injury, a key determinant of long-term clinical outcomes. However, the relationship between biomech...
Autores principales: | Donat, Cornelius K, Yanez Lopez, Maria, Sastre, Magdalena, Baxan, Nicoleta, Goldfinger, Marc, Seeamber, Reneira, Müller, Franziska, Davies, Polly, Hellyer, Peter, Siegkas, Petros, Gentleman, Steve, Sharp, David J, Ghajari, Mazdak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990483/ https://www.ncbi.nlm.nih.gov/pubmed/33454735 http://dx.doi.org/10.1093/brain/awaa336 |
Ejemplares similares
-
The traumatic brain injury mitigation effects of a new viscoelastic add-on liner
por: Siegkas, Petros, et al.
Publicado: (2019) -
Multiscale modelling of cerebrovascular injury reveals the role of vascular anatomy and parenchymal shear stresses
por: Farajzadeh Khosroshahi, Siamak, et al.
Publicado: (2021) -
Microglial Activation in Traumatic Brain Injury
por: Donat, Cornelius K., et al.
Publicado: (2017) -
Smoothed particle hydrodynamic modelling of the cerebrospinal fluid for brain biomechanics: Accuracy and stability
por: Duckworth, Harry, et al.
Publicado: (2021) -
The biomechanical signature of loss of consciousness: computational modelling of elite athlete head injuries
por: Zimmerman, Karl A, et al.
Publicado: (2022)