Cargando…

Characterizing the portability of phage-encoded homologous recombination proteins

Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded ssDNA annealing proteins (SSAP...

Descripción completa

Detalles Bibliográficos
Autores principales: Filsinger, Gabriel T., Wannier, Timothy M., Pedersen, Felix B., Lutz, Isaac D., Zhang, Julie, Stork, Devon A., Debnath, Anik, Gozzi, Kevin, Kuchwara, Helene, Volf, Verena, Wang, Stan, Rios, Xavier, Gregg, Christopher J., Lajoie, Marc J., Shipman, Seth L., Aach, John, Laub, Michael T., Church, George M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990699/
https://www.ncbi.nlm.nih.gov/pubmed/33462496
http://dx.doi.org/10.1038/s41589-020-00710-5
_version_ 1783669111772938240
author Filsinger, Gabriel T.
Wannier, Timothy M.
Pedersen, Felix B.
Lutz, Isaac D.
Zhang, Julie
Stork, Devon A.
Debnath, Anik
Gozzi, Kevin
Kuchwara, Helene
Volf, Verena
Wang, Stan
Rios, Xavier
Gregg, Christopher J.
Lajoie, Marc J.
Shipman, Seth L.
Aach, John
Laub, Michael T.
Church, George M.
author_facet Filsinger, Gabriel T.
Wannier, Timothy M.
Pedersen, Felix B.
Lutz, Isaac D.
Zhang, Julie
Stork, Devon A.
Debnath, Anik
Gozzi, Kevin
Kuchwara, Helene
Volf, Verena
Wang, Stan
Rios, Xavier
Gregg, Christopher J.
Lajoie, Marc J.
Shipman, Seth L.
Aach, John
Laub, Michael T.
Church, George M.
author_sort Filsinger, Gabriel T.
collection PubMed
description Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded ssDNA annealing proteins (SSAPs) improve HR 1000-fold above endogenous levels; however, they are not broadly functional. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus, and Caulobacter crescentus we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host’s single-stranded DNA-binding protein (SSB), and are portable between species if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with a paired SSB can significantly improve activity, in some species enabling SSAP functionality even without host-compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes inaccessible through sequential nucleotide conversions.
format Online
Article
Text
id pubmed-7990699
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-79906992021-07-18 Characterizing the portability of phage-encoded homologous recombination proteins Filsinger, Gabriel T. Wannier, Timothy M. Pedersen, Felix B. Lutz, Isaac D. Zhang, Julie Stork, Devon A. Debnath, Anik Gozzi, Kevin Kuchwara, Helene Volf, Verena Wang, Stan Rios, Xavier Gregg, Christopher J. Lajoie, Marc J. Shipman, Seth L. Aach, John Laub, Michael T. Church, George M. Nat Chem Biol Article Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded ssDNA annealing proteins (SSAPs) improve HR 1000-fold above endogenous levels; however, they are not broadly functional. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus, and Caulobacter crescentus we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host’s single-stranded DNA-binding protein (SSB), and are portable between species if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with a paired SSB can significantly improve activity, in some species enabling SSAP functionality even without host-compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes inaccessible through sequential nucleotide conversions. 2021-01-18 2021-04 /pmc/articles/PMC7990699/ /pubmed/33462496 http://dx.doi.org/10.1038/s41589-020-00710-5 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Filsinger, Gabriel T.
Wannier, Timothy M.
Pedersen, Felix B.
Lutz, Isaac D.
Zhang, Julie
Stork, Devon A.
Debnath, Anik
Gozzi, Kevin
Kuchwara, Helene
Volf, Verena
Wang, Stan
Rios, Xavier
Gregg, Christopher J.
Lajoie, Marc J.
Shipman, Seth L.
Aach, John
Laub, Michael T.
Church, George M.
Characterizing the portability of phage-encoded homologous recombination proteins
title Characterizing the portability of phage-encoded homologous recombination proteins
title_full Characterizing the portability of phage-encoded homologous recombination proteins
title_fullStr Characterizing the portability of phage-encoded homologous recombination proteins
title_full_unstemmed Characterizing the portability of phage-encoded homologous recombination proteins
title_short Characterizing the portability of phage-encoded homologous recombination proteins
title_sort characterizing the portability of phage-encoded homologous recombination proteins
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990699/
https://www.ncbi.nlm.nih.gov/pubmed/33462496
http://dx.doi.org/10.1038/s41589-020-00710-5
work_keys_str_mv AT filsingergabrielt characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT wanniertimothym characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT pedersenfelixb characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT lutzisaacd characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT zhangjulie characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT storkdevona characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT debnathanik characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT gozzikevin characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT kuchwarahelene characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT volfverena characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT wangstan characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT riosxavier characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT greggchristopherj characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT lajoiemarcj characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT shipmansethl characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT aachjohn characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT laubmichaelt characterizingtheportabilityofphageencodedhomologousrecombinationproteins
AT churchgeorgem characterizingtheportabilityofphageencodedhomologousrecombinationproteins