Cargando…
Data Augmentation: Using Channel-Level Recombination to Improve Classification Performance for Motor Imagery EEG
The quality and quantity of training data are crucial to the performance of a deep-learning-based brain-computer interface (BCI) system. However, it is not practical to record EEG data over several long calibration sessions. A promising time- and cost-efficient solution is artificial data generation...
Autores principales: | Pei, Yu, Luo, Zhiguo, Yan, Ye, Yan, Huijiong, Jiang, Jing, Li, Weiguo, Xie, Liang, Yin, Erwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990774/ https://www.ncbi.nlm.nih.gov/pubmed/33776673 http://dx.doi.org/10.3389/fnhum.2021.645952 |
Ejemplares similares
-
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification
por: Kim, Da-Hyun, et al.
Publicado: (2023) -
Temporal Combination Pattern Optimization Based on Feature Selection Method for Motor Imagery BCIs
por: Jiang, Jing, et al.
Publicado: (2020) -
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023) -
The increasing instance of negative emotion reduce the performance of emotion recognition
por: Wang, Xiaomin, et al.
Publicado: (2023)