Cargando…
Improving the performance of ghost imaging via measurement-driven framework
High-quality reconstruction under a low sampling rate is very important for ghost imaging. How to obtain perfect imaging results from the low sampling rate has become a research hotspot in ghost imaging. In this paper, inspired by matrix optimization in compressed sensing, an optimization scheme of...
Autores principales: | Kang, Hanqiu, Wang, Yijun, Zhang, Ling, Huang, Duan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990946/ https://www.ncbi.nlm.nih.gov/pubmed/33762695 http://dx.doi.org/10.1038/s41598-021-86275-2 |
Ejemplares similares
-
DeepGhost: real-time computational ghost imaging via deep learning
por: Rizvi, Saad, et al.
Publicado: (2020) -
Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning
por: Sun, Ming-Jie, et al.
Publicado: (2019) -
High Speed Computational Ghost Imaging via Spatial Sweeping
por: Wang, Yuwang, et al.
Publicado: (2017) -
Route to Intelligent Imaging Reconstruction via Terahertz Nonlinear Ghost Imaging
por: Totero Gongora, Juan S., et al.
Publicado: (2020) -
Ghost Imaging Based on Deep Learning
por: He, Yuchen, et al.
Publicado: (2018)