Cargando…
A Clinical Decision Support System for Predicting Invasive Breast Cancer Recurrence: Preliminary Results
The mortality associated to breast cancer is in many cases related to metastasization and recurrence. Personalized treatment strategies are critical for the outcomes improvement of BC patients and the Clinical Decision Support Systems can have an important role in medical practice. In this paper, we...
Autores principales: | Massafra, Raffaella, Latorre, Agnese, Fanizzi, Annarita, Bellotti, Roberto, Didonna, Vittorio, Giotta, Francesco, La Forgia, Daniele, Nardone, Annalisa, Pastena, Maria, Ressa, Cosmo Maurizio, Rinaldi, Lucia, Russo, Anna Orsola Maria, Tamborra, Pasquale, Tangaro, Sabina, Zito, Alfredo, Lorusso, Vito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7991309/ https://www.ncbi.nlm.nih.gov/pubmed/33777733 http://dx.doi.org/10.3389/fonc.2021.576007 |
Ejemplares similares
-
A machine learning ensemble approach for 5- and 10-year breast cancer invasive disease event classification
por: Massafra, Raffaella, et al.
Publicado: (2022) -
Analyzing breast cancer invasive disease event classification through explainable artificial intelligence
por: Massafra, Raffaella, et al.
Publicado: (2023) -
Radiomic Analysis in Contrast-Enhanced Spectral Mammography for Predicting Breast Cancer Histological Outcome
por: La Forgia, Daniele, et al.
Publicado: (2020) -
Predicting of Sentinel Lymph Node Status in Breast Cancer Patients with Clinically Negative Nodes: A Validation Study
por: Fanizzi, Annarita, et al.
Publicado: (2021) -
Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs
por: Comes, Maria Colomba, et al.
Publicado: (2021)