Cargando…
Using Machine Learning Technologies in Pressure Injury Management: Systematic Review
BACKGROUND: Pressure injury (PI) is a common and preventable problem, yet it is a challenge for at least two reasons. First, the nurse shortage is a worldwide phenomenon. Second, the majority of nurses have insufficient PI-related knowledge. Machine learning (ML) technologies can contribute to lesse...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7991995/ https://www.ncbi.nlm.nih.gov/pubmed/33688846 http://dx.doi.org/10.2196/25704 |
_version_ | 1783669288650932224 |
---|---|
author | Jiang, Mengyao Ma, Yuxia Guo, Siyi Jin, Liuqi Lv, Lin Han, Lin An, Ning |
author_facet | Jiang, Mengyao Ma, Yuxia Guo, Siyi Jin, Liuqi Lv, Lin Han, Lin An, Ning |
author_sort | Jiang, Mengyao |
collection | PubMed |
description | BACKGROUND: Pressure injury (PI) is a common and preventable problem, yet it is a challenge for at least two reasons. First, the nurse shortage is a worldwide phenomenon. Second, the majority of nurses have insufficient PI-related knowledge. Machine learning (ML) technologies can contribute to lessening the burden on medical staff by improving the prognosis and diagnostic accuracy of PI. To the best of our knowledge, there is no existing systematic review that evaluates how the current ML technologies are being used in PI management. OBJECTIVE: The objective of this review was to synthesize and evaluate the literature regarding the use of ML technologies in PI management, and identify their strengths and weaknesses, as well as to identify improvement opportunities for future research and practice. METHODS: We conducted an extensive search on PubMed, EMBASE, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, China National Knowledge Infrastructure (CNKI), the Wanfang database, the VIP database, and the China Biomedical Literature Database (CBM) to identify relevant articles. Searches were performed in June 2020. Two independent investigators conducted study selection, data extraction, and quality appraisal. Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). RESULTS: A total of 32 articles met the inclusion criteria. Twelve of those articles (38%) reported using ML technologies to develop predictive models to identify risk factors, 11 (34%) reported using them in posture detection and recognition, and 9 (28%) reported using them in image analysis for tissue classification and measurement of PI wounds. These articles presented various algorithms and measured outcomes. The overall risk of bias was judged as high. CONCLUSIONS: There is an array of emerging ML technologies being used in PI management, and their results in the laboratory show great promise. Future research should apply these technologies on a large scale with clinical data to further verify and improve their effectiveness, as well as to improve the methodological quality. |
format | Online Article Text |
id | pubmed-7991995 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-79919952021-04-01 Using Machine Learning Technologies in Pressure Injury Management: Systematic Review Jiang, Mengyao Ma, Yuxia Guo, Siyi Jin, Liuqi Lv, Lin Han, Lin An, Ning JMIR Med Inform Review BACKGROUND: Pressure injury (PI) is a common and preventable problem, yet it is a challenge for at least two reasons. First, the nurse shortage is a worldwide phenomenon. Second, the majority of nurses have insufficient PI-related knowledge. Machine learning (ML) technologies can contribute to lessening the burden on medical staff by improving the prognosis and diagnostic accuracy of PI. To the best of our knowledge, there is no existing systematic review that evaluates how the current ML technologies are being used in PI management. OBJECTIVE: The objective of this review was to synthesize and evaluate the literature regarding the use of ML technologies in PI management, and identify their strengths and weaknesses, as well as to identify improvement opportunities for future research and practice. METHODS: We conducted an extensive search on PubMed, EMBASE, Web of Science, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Cochrane Library, China National Knowledge Infrastructure (CNKI), the Wanfang database, the VIP database, and the China Biomedical Literature Database (CBM) to identify relevant articles. Searches were performed in June 2020. Two independent investigators conducted study selection, data extraction, and quality appraisal. Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). RESULTS: A total of 32 articles met the inclusion criteria. Twelve of those articles (38%) reported using ML technologies to develop predictive models to identify risk factors, 11 (34%) reported using them in posture detection and recognition, and 9 (28%) reported using them in image analysis for tissue classification and measurement of PI wounds. These articles presented various algorithms and measured outcomes. The overall risk of bias was judged as high. CONCLUSIONS: There is an array of emerging ML technologies being used in PI management, and their results in the laboratory show great promise. Future research should apply these technologies on a large scale with clinical data to further verify and improve their effectiveness, as well as to improve the methodological quality. JMIR Publications 2021-03-10 /pmc/articles/PMC7991995/ /pubmed/33688846 http://dx.doi.org/10.2196/25704 Text en ©Mengyao Jiang, Yuxia Ma, Siyi Guo, Liuqi Jin, Lin Lv, Lin Han, Ning An. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 10.03.2021. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Review Jiang, Mengyao Ma, Yuxia Guo, Siyi Jin, Liuqi Lv, Lin Han, Lin An, Ning Using Machine Learning Technologies in Pressure Injury Management: Systematic Review |
title | Using Machine Learning Technologies in Pressure Injury Management: Systematic Review |
title_full | Using Machine Learning Technologies in Pressure Injury Management: Systematic Review |
title_fullStr | Using Machine Learning Technologies in Pressure Injury Management: Systematic Review |
title_full_unstemmed | Using Machine Learning Technologies in Pressure Injury Management: Systematic Review |
title_short | Using Machine Learning Technologies in Pressure Injury Management: Systematic Review |
title_sort | using machine learning technologies in pressure injury management: systematic review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7991995/ https://www.ncbi.nlm.nih.gov/pubmed/33688846 http://dx.doi.org/10.2196/25704 |
work_keys_str_mv | AT jiangmengyao usingmachinelearningtechnologiesinpressureinjurymanagementsystematicreview AT mayuxia usingmachinelearningtechnologiesinpressureinjurymanagementsystematicreview AT guosiyi usingmachinelearningtechnologiesinpressureinjurymanagementsystematicreview AT jinliuqi usingmachinelearningtechnologiesinpressureinjurymanagementsystematicreview AT lvlin usingmachinelearningtechnologiesinpressureinjurymanagementsystematicreview AT hanlin usingmachinelearningtechnologiesinpressureinjurymanagementsystematicreview AT anning usingmachinelearningtechnologiesinpressureinjurymanagementsystematicreview |