Cargando…
Hydrothermal Synthesis of K(2)Ti(6)O(13) Nanotubes/Nanoparticles: A Photodegradation Study on Methylene Blue and Rhodamine B Dyes
[Image: see text] The degradation of methylene blue and rhodamine B dyes using potassium hexatitanate nanoparticles (KTNPs) and potassium hexatitanate nanotubes (KTNTs) synthesized via a hydrothermal method as efficient photocatalysts under UV light irradiation was investigated. The kinetics of degr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992068/ https://www.ncbi.nlm.nih.gov/pubmed/33778239 http://dx.doi.org/10.1021/acsomega.0c02087 |
_version_ | 1783669299966115840 |
---|---|
author | Kenchappa Somashekharappa, Kiran Lokesh, Sampangi Venkatesh |
author_facet | Kenchappa Somashekharappa, Kiran Lokesh, Sampangi Venkatesh |
author_sort | Kenchappa Somashekharappa, Kiran |
collection | PubMed |
description | [Image: see text] The degradation of methylene blue and rhodamine B dyes using potassium hexatitanate nanoparticles (KTNPs) and potassium hexatitanate nanotubes (KTNTs) synthesized via a hydrothermal method as efficient photocatalysts under UV light irradiation was investigated. The kinetics of degradation was determined for the two different catalysts––KTNPs and KTNTs––by monitoring the optical absorption of the dyes. The as-synthesized KTNPs were found to be spherical in shape with an average particle size of ∼36 ± 1.7 nm, whereas the KTNTs evidenced a tubular hollow structure with ∼7 nm internal diameter and ∼12 nm external diameter, as perused by structural and morphological studies. The larger surface area of KTNTs showed a greater impact on the photodegradation of dyes manifesting their high potential as compared to KTNPs under UV irradiation, and the reusability studies showed more than 90% (KTNTs) and 80% (KTNPs) degradation of the dyes even after the fourth cycle elucidating their stability. |
format | Online Article Text |
id | pubmed-7992068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-79920682021-03-26 Hydrothermal Synthesis of K(2)Ti(6)O(13) Nanotubes/Nanoparticles: A Photodegradation Study on Methylene Blue and Rhodamine B Dyes Kenchappa Somashekharappa, Kiran Lokesh, Sampangi Venkatesh ACS Omega [Image: see text] The degradation of methylene blue and rhodamine B dyes using potassium hexatitanate nanoparticles (KTNPs) and potassium hexatitanate nanotubes (KTNTs) synthesized via a hydrothermal method as efficient photocatalysts under UV light irradiation was investigated. The kinetics of degradation was determined for the two different catalysts––KTNPs and KTNTs––by monitoring the optical absorption of the dyes. The as-synthesized KTNPs were found to be spherical in shape with an average particle size of ∼36 ± 1.7 nm, whereas the KTNTs evidenced a tubular hollow structure with ∼7 nm internal diameter and ∼12 nm external diameter, as perused by structural and morphological studies. The larger surface area of KTNTs showed a greater impact on the photodegradation of dyes manifesting their high potential as compared to KTNPs under UV irradiation, and the reusability studies showed more than 90% (KTNTs) and 80% (KTNPs) degradation of the dyes even after the fourth cycle elucidating their stability. American Chemical Society 2021-03-12 /pmc/articles/PMC7992068/ /pubmed/33778239 http://dx.doi.org/10.1021/acsomega.0c02087 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Kenchappa Somashekharappa, Kiran Lokesh, Sampangi Venkatesh Hydrothermal Synthesis of K(2)Ti(6)O(13) Nanotubes/Nanoparticles: A Photodegradation Study on Methylene Blue and Rhodamine B Dyes |
title | Hydrothermal Synthesis of K(2)Ti(6)O(13) Nanotubes/Nanoparticles: A Photodegradation Study
on Methylene Blue and Rhodamine B Dyes |
title_full | Hydrothermal Synthesis of K(2)Ti(6)O(13) Nanotubes/Nanoparticles: A Photodegradation Study
on Methylene Blue and Rhodamine B Dyes |
title_fullStr | Hydrothermal Synthesis of K(2)Ti(6)O(13) Nanotubes/Nanoparticles: A Photodegradation Study
on Methylene Blue and Rhodamine B Dyes |
title_full_unstemmed | Hydrothermal Synthesis of K(2)Ti(6)O(13) Nanotubes/Nanoparticles: A Photodegradation Study
on Methylene Blue and Rhodamine B Dyes |
title_short | Hydrothermal Synthesis of K(2)Ti(6)O(13) Nanotubes/Nanoparticles: A Photodegradation Study
on Methylene Blue and Rhodamine B Dyes |
title_sort | hydrothermal synthesis of k(2)ti(6)o(13) nanotubes/nanoparticles: a photodegradation study
on methylene blue and rhodamine b dyes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992068/ https://www.ncbi.nlm.nih.gov/pubmed/33778239 http://dx.doi.org/10.1021/acsomega.0c02087 |
work_keys_str_mv | AT kenchappasomashekharappakiran hydrothermalsynthesisofk2ti6o13nanotubesnanoparticlesaphotodegradationstudyonmethyleneblueandrhodaminebdyes AT lokeshsampangivenkatesh hydrothermalsynthesisofk2ti6o13nanotubesnanoparticlesaphotodegradationstudyonmethyleneblueandrhodaminebdyes |