Cargando…

Hierarchical Lignin-Based Carbon Matrix and Carbon Dot Composite Electrodes for High-Performance Supercapacitors

[Image: see text] This work adopts an efficient chemical-wet method to build a three-dimensional (3D) carbon composite as an electrode material for high-performance supercapacitors (SCs). Carbon dots (CDs), prepared by thermal pyrolysis of citric acid and urea under microwaves at 280 °C, are homogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Lu, Hsieh, Chien-Te, Keffer, David J., Chen, Hao, Goenaga, Gabriel A., Dai, Sheng, Zawodzinski, Thomas A., Harper, David P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992182/
https://www.ncbi.nlm.nih.gov/pubmed/33778297
http://dx.doi.org/10.1021/acsomega.1c00448
Descripción
Sumario:[Image: see text] This work adopts an efficient chemical-wet method to build a three-dimensional (3D) carbon composite as an electrode material for high-performance supercapacitors (SCs). Carbon dots (CDs), prepared by thermal pyrolysis of citric acid and urea under microwaves at 280 °C, are homogeneously coated onto lignin-based activated carbons (ACs), thus forming the 3D composites possessing an interior surface decorated with CD binding sites. Benefiting from the hydrophilicity and ultrafine size of CDs, the affinity of the electrode surface toward aqueous electrolytes is significantly improved with the addition of CDs, leading to the enhanced effective surface area (i.e., abundant electroactive sites) and a decreased ionic diffusion path. The capacitance of the SCs is improved from 125.8 to 301.7 F g(–1) with CD addition. The SC with CD addition possesses improved cycle stability with a coulombic efficiency around 100% after 3000 cycles. After cycling, the ion diffusion coefficient of the CD@AC-11 electrode is enhanced by 25.5 times as compared to that of the pristine AC one. This unique and robust carbon framework can be utilized for engineering the desired pore structure and micropore/mesopore fraction within the AC electrodes. This strategy of CD@AC electrodes demonstrates a promising route for using renewable porous carbon materials in advanced energy-storage devices.