Cargando…

DDRE-34. TARGETING RESISTANCE IN MEDULLOBLASTOMA

Medulloblastoma is the most commonly diagnosed pediatric brain tumor. Although therapeutic advances have improved survival from this cancer, they result in devastating sequelae and, additionally, have proven inadequate in metastatic disease and recurrence where survival remains <5%. Effective the...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Simone, Meiman, Evan, Telang, Sucheta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992245/
http://dx.doi.org/10.1093/noajnl/vdab024.056
_version_ 1783669334197927936
author Chang, Simone
Meiman, Evan
Telang, Sucheta
author_facet Chang, Simone
Meiman, Evan
Telang, Sucheta
author_sort Chang, Simone
collection PubMed
description Medulloblastoma is the most commonly diagnosed pediatric brain tumor. Although therapeutic advances have improved survival from this cancer, they result in devastating sequelae and, additionally, have proven inadequate in metastatic disease and recurrence where survival remains <5%. Effective therapies are urgently needed to improve outcomes in medulloblastoma. Medulloblastoma development is driven by dysregulation of normal cerebellar proliferation. Mutations in the sonic hedgehog (Shh) pathway are found in ~30% of these tumors and responsible for their aggressive growth. The poor outcomes in Shh-driven medulloblastoma have prompted the evaluation of Shh-targeting agents in their treatment – with limited success likely attributable in part to the upregulation of alternate survival pathways (e.g. Ras/MAPK and HIF-1α). These alternate mechanisms stimulate glycolysis, in part by increasing the activity of the 6-phosphofructo-2-kinase/fructose-2,6 bisphosphatases (PFKFB1-4) to produce fructose-2,6-bisphosphate (F26BP), a potent activator of the rate-limiting glycolytic enzyme, 6-phosphofructo-1-kinase. In recent studies, we have determined that the PFKFB4 enzyme is highly expressed in patient-derived Shh medulloblastomas. We have found that hypoxia, through HIF-1α, strongly induced PFKFB4 expression in Shh-driven medulloblastoma cells and that silencing PFKFB4 suppressed F26BP, glycolysis and proliferation in normoxia and, more markedly, in hypoxia, indicating that PFKFB4 may be required for growth under hypoxia. We found that simultaneously silencing PFKFB4 and Shh pathway effectors significantly reduced cell survival and that co-targeting PFKFB4 (with a novel inhibitor) and Shh effectors synergistically decreased cell viability. In order to simulate Shh antagonist resistance, we have now subjected Shh medulloblastoma cells to prolonged Shh inhibitor exposure and found that these cells exhibit increased proliferation, glycolysis and PFKFB4. Studies are underway to delineate their metabolic alterations. Taken together, our data indicate that targeting PFKFB4 may be a valid therapeutic option in aggressive, treatment-resistant medulloblastoma and strongly support the further examination of PFKFB4 inhibitors in these tumors.
format Online
Article
Text
id pubmed-7992245
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-79922452021-03-31 DDRE-34. TARGETING RESISTANCE IN MEDULLOBLASTOMA Chang, Simone Meiman, Evan Telang, Sucheta Neurooncol Adv Supplement Abstracts Medulloblastoma is the most commonly diagnosed pediatric brain tumor. Although therapeutic advances have improved survival from this cancer, they result in devastating sequelae and, additionally, have proven inadequate in metastatic disease and recurrence where survival remains <5%. Effective therapies are urgently needed to improve outcomes in medulloblastoma. Medulloblastoma development is driven by dysregulation of normal cerebellar proliferation. Mutations in the sonic hedgehog (Shh) pathway are found in ~30% of these tumors and responsible for their aggressive growth. The poor outcomes in Shh-driven medulloblastoma have prompted the evaluation of Shh-targeting agents in their treatment – with limited success likely attributable in part to the upregulation of alternate survival pathways (e.g. Ras/MAPK and HIF-1α). These alternate mechanisms stimulate glycolysis, in part by increasing the activity of the 6-phosphofructo-2-kinase/fructose-2,6 bisphosphatases (PFKFB1-4) to produce fructose-2,6-bisphosphate (F26BP), a potent activator of the rate-limiting glycolytic enzyme, 6-phosphofructo-1-kinase. In recent studies, we have determined that the PFKFB4 enzyme is highly expressed in patient-derived Shh medulloblastomas. We have found that hypoxia, through HIF-1α, strongly induced PFKFB4 expression in Shh-driven medulloblastoma cells and that silencing PFKFB4 suppressed F26BP, glycolysis and proliferation in normoxia and, more markedly, in hypoxia, indicating that PFKFB4 may be required for growth under hypoxia. We found that simultaneously silencing PFKFB4 and Shh pathway effectors significantly reduced cell survival and that co-targeting PFKFB4 (with a novel inhibitor) and Shh effectors synergistically decreased cell viability. In order to simulate Shh antagonist resistance, we have now subjected Shh medulloblastoma cells to prolonged Shh inhibitor exposure and found that these cells exhibit increased proliferation, glycolysis and PFKFB4. Studies are underway to delineate their metabolic alterations. Taken together, our data indicate that targeting PFKFB4 may be a valid therapeutic option in aggressive, treatment-resistant medulloblastoma and strongly support the further examination of PFKFB4 inhibitors in these tumors. Oxford University Press 2021-03-25 /pmc/articles/PMC7992245/ http://dx.doi.org/10.1093/noajnl/vdab024.056 Text en © The Author(s) 2021. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Supplement Abstracts
Chang, Simone
Meiman, Evan
Telang, Sucheta
DDRE-34. TARGETING RESISTANCE IN MEDULLOBLASTOMA
title DDRE-34. TARGETING RESISTANCE IN MEDULLOBLASTOMA
title_full DDRE-34. TARGETING RESISTANCE IN MEDULLOBLASTOMA
title_fullStr DDRE-34. TARGETING RESISTANCE IN MEDULLOBLASTOMA
title_full_unstemmed DDRE-34. TARGETING RESISTANCE IN MEDULLOBLASTOMA
title_short DDRE-34. TARGETING RESISTANCE IN MEDULLOBLASTOMA
title_sort ddre-34. targeting resistance in medulloblastoma
topic Supplement Abstracts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992245/
http://dx.doi.org/10.1093/noajnl/vdab024.056
work_keys_str_mv AT changsimone ddre34targetingresistanceinmedulloblastoma
AT meimanevan ddre34targetingresistanceinmedulloblastoma
AT telangsucheta ddre34targetingresistanceinmedulloblastoma