Cargando…
ETMM-06. ELEVATED MITOCHONDRIAL TOM20 EXPRESSION SUPPRESSES GLIOMA MALIGNANCY BY ENHANCING OXIDATIVE PHOSPHORYLATION
BACKGROUND: Malignant glioma display a metabolic shift towards aerobic glycolysis with reprogramming of mitochondrial oxidative phosphorylation (OXPHOs). However, the underlying mechanism for this metabolic switch in glioma is not well elucidated. Mitochondrial translocases of the outer/inner membra...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992256/ http://dx.doi.org/10.1093/noajnl/vdab024.062 |
_version_ | 1783669336105287680 |
---|---|
author | Li, Mao Zhang, Shuxin Yang, Wanchun Yang, Yuan Pang, Dejiang Mao, Qing Chen, Mina Liu, Yanhui |
author_facet | Li, Mao Zhang, Shuxin Yang, Wanchun Yang, Yuan Pang, Dejiang Mao, Qing Chen, Mina Liu, Yanhui |
author_sort | Li, Mao |
collection | PubMed |
description | BACKGROUND: Malignant glioma display a metabolic shift towards aerobic glycolysis with reprogramming of mitochondrial oxidative phosphorylation (OXPHOs). However, the underlying mechanism for this metabolic switch in glioma is not well elucidated. Mitochondrial translocases of the outer/inner membrane (TOMs/TIMs) import proteins into mitochondria, and could thereby regulate OXPHOs. The objective of this study is to investigate the expression of TOM/TIM members in glioma, as well as their functional and therapeutic implications. METHODS: Transcriptome sequencing (RNA-seq), real-time PCR, Western blot, and immunohistochemistry were used to identify Tom20 as a significantly downregulated TOM/TIM protein in 20 paired glioma/Peritumoral tissues. To study the biological function of Tom20 in glioma, we interrogated metabolic alterations in Tom20 overexpressed glioma cells by GC-MS metabolomics, acetyl-CoA assay, and Seahorse assay. We compared the cell proliferation and viability profiles between Tom20 overexpressed and control cells in vitro and in vivo. To investigate the therapeutic implication of Tom20 expression, we tested OXPHOs inhibitor metformin in Tom20 overexpressed cells and xenograft mouse models. RESULTS: We find that Tom20, a critical component of the mitochondrial outer membrane translocases, is downregulated in malignant gliomas. Using an integrative approach spanning bioinformatic analysis, metabolomics, and functional approaches, we reveal that Tom20 elevation activates mitochondrial OXPHOs in glioma cells and reduces tumor malignancy. We also find that Tom20 upregulation sensitizes glioma cells to metformin in vitro, and improves the therapeutic efficacy of metformin in glioma in vivo. CONCLUSION: Our work defines Tom20 as a glioma suppressor and an indicator of metformin treatment in glioma. |
format | Online Article Text |
id | pubmed-7992256 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-79922562021-03-31 ETMM-06. ELEVATED MITOCHONDRIAL TOM20 EXPRESSION SUPPRESSES GLIOMA MALIGNANCY BY ENHANCING OXIDATIVE PHOSPHORYLATION Li, Mao Zhang, Shuxin Yang, Wanchun Yang, Yuan Pang, Dejiang Mao, Qing Chen, Mina Liu, Yanhui Neurooncol Adv Supplement Abstracts BACKGROUND: Malignant glioma display a metabolic shift towards aerobic glycolysis with reprogramming of mitochondrial oxidative phosphorylation (OXPHOs). However, the underlying mechanism for this metabolic switch in glioma is not well elucidated. Mitochondrial translocases of the outer/inner membrane (TOMs/TIMs) import proteins into mitochondria, and could thereby regulate OXPHOs. The objective of this study is to investigate the expression of TOM/TIM members in glioma, as well as their functional and therapeutic implications. METHODS: Transcriptome sequencing (RNA-seq), real-time PCR, Western blot, and immunohistochemistry were used to identify Tom20 as a significantly downregulated TOM/TIM protein in 20 paired glioma/Peritumoral tissues. To study the biological function of Tom20 in glioma, we interrogated metabolic alterations in Tom20 overexpressed glioma cells by GC-MS metabolomics, acetyl-CoA assay, and Seahorse assay. We compared the cell proliferation and viability profiles between Tom20 overexpressed and control cells in vitro and in vivo. To investigate the therapeutic implication of Tom20 expression, we tested OXPHOs inhibitor metformin in Tom20 overexpressed cells and xenograft mouse models. RESULTS: We find that Tom20, a critical component of the mitochondrial outer membrane translocases, is downregulated in malignant gliomas. Using an integrative approach spanning bioinformatic analysis, metabolomics, and functional approaches, we reveal that Tom20 elevation activates mitochondrial OXPHOs in glioma cells and reduces tumor malignancy. We also find that Tom20 upregulation sensitizes glioma cells to metformin in vitro, and improves the therapeutic efficacy of metformin in glioma in vivo. CONCLUSION: Our work defines Tom20 as a glioma suppressor and an indicator of metformin treatment in glioma. Oxford University Press 2021-03-25 /pmc/articles/PMC7992256/ http://dx.doi.org/10.1093/noajnl/vdab024.062 Text en © The Author(s) 2021. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Supplement Abstracts Li, Mao Zhang, Shuxin Yang, Wanchun Yang, Yuan Pang, Dejiang Mao, Qing Chen, Mina Liu, Yanhui ETMM-06. ELEVATED MITOCHONDRIAL TOM20 EXPRESSION SUPPRESSES GLIOMA MALIGNANCY BY ENHANCING OXIDATIVE PHOSPHORYLATION |
title | ETMM-06. ELEVATED MITOCHONDRIAL TOM20 EXPRESSION SUPPRESSES GLIOMA MALIGNANCY BY ENHANCING OXIDATIVE PHOSPHORYLATION |
title_full | ETMM-06. ELEVATED MITOCHONDRIAL TOM20 EXPRESSION SUPPRESSES GLIOMA MALIGNANCY BY ENHANCING OXIDATIVE PHOSPHORYLATION |
title_fullStr | ETMM-06. ELEVATED MITOCHONDRIAL TOM20 EXPRESSION SUPPRESSES GLIOMA MALIGNANCY BY ENHANCING OXIDATIVE PHOSPHORYLATION |
title_full_unstemmed | ETMM-06. ELEVATED MITOCHONDRIAL TOM20 EXPRESSION SUPPRESSES GLIOMA MALIGNANCY BY ENHANCING OXIDATIVE PHOSPHORYLATION |
title_short | ETMM-06. ELEVATED MITOCHONDRIAL TOM20 EXPRESSION SUPPRESSES GLIOMA MALIGNANCY BY ENHANCING OXIDATIVE PHOSPHORYLATION |
title_sort | etmm-06. elevated mitochondrial tom20 expression suppresses glioma malignancy by enhancing oxidative phosphorylation |
topic | Supplement Abstracts |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992256/ http://dx.doi.org/10.1093/noajnl/vdab024.062 |
work_keys_str_mv | AT limao etmm06elevatedmitochondrialtom20expressionsuppressesgliomamalignancybyenhancingoxidativephosphorylation AT zhangshuxin etmm06elevatedmitochondrialtom20expressionsuppressesgliomamalignancybyenhancingoxidativephosphorylation AT yangwanchun etmm06elevatedmitochondrialtom20expressionsuppressesgliomamalignancybyenhancingoxidativephosphorylation AT yangyuan etmm06elevatedmitochondrialtom20expressionsuppressesgliomamalignancybyenhancingoxidativephosphorylation AT pangdejiang etmm06elevatedmitochondrialtom20expressionsuppressesgliomamalignancybyenhancingoxidativephosphorylation AT maoqing etmm06elevatedmitochondrialtom20expressionsuppressesgliomamalignancybyenhancingoxidativephosphorylation AT chenmina etmm06elevatedmitochondrialtom20expressionsuppressesgliomamalignancybyenhancingoxidativephosphorylation AT liuyanhui etmm06elevatedmitochondrialtom20expressionsuppressesgliomamalignancybyenhancingoxidativephosphorylation |