Cargando…
Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer
BACKGROUND: Survival and drug response are two highly emphasized clinical outcomes in cancer research that directs the prognosis of a cancer patient. Here, we have proposed a late multi omics integrative framework that robustly quantifies survival and drug response for breast cancer patients with a...
Autores principales: | Malik, Vidhi, Kalakoti, Yogesh, Sundar, Durai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992339/ https://www.ncbi.nlm.nih.gov/pubmed/33761889 http://dx.doi.org/10.1186/s12864-021-07524-2 |
Ejemplares similares
-
Deep Neural Network-Assisted Drug Recommendation Systems
for Identifying Potential Drug–Target Interactions
por: Kalakoti, Yogesh, et al.
Publicado: (2022) -
SurvCNN: A Discrete Time-to-Event Cancer Survival Estimation Framework Using Image Representations of Omics Data
por: Kalakoti, Yogesh, et al.
Publicado: (2021) -
TransDTI: Transformer-Based Language Models for Estimating
DTIs and Building a Drug Recommendation Workflow
por: Kalakoti, Yogesh, et al.
Publicado: (2022) -
Genome Sequence of a Potent Biosurfactant-Producing Bacterium, Franconibacter sp. Strain IITDAS19
por: Sharma, Jyoti, et al.
Publicado: (2022) -
Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis
por: Tong, Li, et al.
Publicado: (2020)