Cargando…

Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices

[Image: see text] Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with...

Descripción completa

Detalles Bibliográficos
Autores principales: Gabbani, Alessio, Fantechi, Elvira, Petrucci, Gaia, Campo, Giulio, de Julián Fernández, César, Ghigna, Paolo, Sorace, Lorenzo, Bonanni, Valentina, Gurioli, Massimo, Sangregorio, Claudio, Pineider, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992377/
https://www.ncbi.nlm.nih.gov/pubmed/33778418
http://dx.doi.org/10.1021/acsanm.0c02588
_version_ 1783669359417229312
author Gabbani, Alessio
Fantechi, Elvira
Petrucci, Gaia
Campo, Giulio
de Julián Fernández, César
Ghigna, Paolo
Sorace, Lorenzo
Bonanni, Valentina
Gurioli, Massimo
Sangregorio, Claudio
Pineider, Francesco
author_facet Gabbani, Alessio
Fantechi, Elvira
Petrucci, Gaia
Campo, Giulio
de Julián Fernández, César
Ghigna, Paolo
Sorace, Lorenzo
Bonanni, Valentina
Gurioli, Massimo
Sangregorio, Claudio
Pineider, Francesco
author_sort Gabbani, Alessio
collection PubMed
description [Image: see text] Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with an improved magnetoplasmonic response. In this work, we prepared core@shell nanostructures made of an 8 nm Au core surrounded by an ultrathin iron oxide shell (≤1 nm). The presence of the iron oxide shell was found to significantly enhance the magneto-optical response of the noble metal in the localized surface plasmon region, compared with uncoated Au nanoparticles. With the support of an analytical model, we ascribed the origin of the enhancement to the shell-induced increase in the dielectric permittivity around the Au core. The experiment points out the importance of the spectral position of the plasmonic resonance in determining the magnitude of the magnetoplasmonic response. Moreover, the analytical model proposed here represents a powerful predictive tool for the quantification of the magnetoplasmonic effect based on resonance position engineering, which has significant implications for the design of active magnetoplasmonic devices.
format Online
Article
Text
id pubmed-7992377
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-79923772021-03-25 Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices Gabbani, Alessio Fantechi, Elvira Petrucci, Gaia Campo, Giulio de Julián Fernández, César Ghigna, Paolo Sorace, Lorenzo Bonanni, Valentina Gurioli, Massimo Sangregorio, Claudio Pineider, Francesco ACS Appl Nano Mater [Image: see text] Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with an improved magnetoplasmonic response. In this work, we prepared core@shell nanostructures made of an 8 nm Au core surrounded by an ultrathin iron oxide shell (≤1 nm). The presence of the iron oxide shell was found to significantly enhance the magneto-optical response of the noble metal in the localized surface plasmon region, compared with uncoated Au nanoparticles. With the support of an analytical model, we ascribed the origin of the enhancement to the shell-induced increase in the dielectric permittivity around the Au core. The experiment points out the importance of the spectral position of the plasmonic resonance in determining the magnitude of the magnetoplasmonic response. Moreover, the analytical model proposed here represents a powerful predictive tool for the quantification of the magnetoplasmonic effect based on resonance position engineering, which has significant implications for the design of active magnetoplasmonic devices. American Chemical Society 2021-01-21 2021-02-26 /pmc/articles/PMC7992377/ /pubmed/33778418 http://dx.doi.org/10.1021/acsanm.0c02588 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Gabbani, Alessio
Fantechi, Elvira
Petrucci, Gaia
Campo, Giulio
de Julián Fernández, César
Ghigna, Paolo
Sorace, Lorenzo
Bonanni, Valentina
Gurioli, Massimo
Sangregorio, Claudio
Pineider, Francesco
Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices
title Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices
title_full Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices
title_fullStr Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices
title_full_unstemmed Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices
title_short Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices
title_sort dielectric effects in feo(x)-coated au nanoparticles boost the magnetoplasmonic response: implications for active plasmonic devices
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992377/
https://www.ncbi.nlm.nih.gov/pubmed/33778418
http://dx.doi.org/10.1021/acsanm.0c02588
work_keys_str_mv AT gabbanialessio dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices
AT fantechielvira dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices
AT petruccigaia dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices
AT campogiulio dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices
AT dejulianfernandezcesar dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices
AT ghignapaolo dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices
AT soracelorenzo dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices
AT bonannivalentina dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices
AT guriolimassimo dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices
AT sangregorioclaudio dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices
AT pineiderfrancesco dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices