Cargando…
Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices
[Image: see text] Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992377/ https://www.ncbi.nlm.nih.gov/pubmed/33778418 http://dx.doi.org/10.1021/acsanm.0c02588 |
_version_ | 1783669359417229312 |
---|---|
author | Gabbani, Alessio Fantechi, Elvira Petrucci, Gaia Campo, Giulio de Julián Fernández, César Ghigna, Paolo Sorace, Lorenzo Bonanni, Valentina Gurioli, Massimo Sangregorio, Claudio Pineider, Francesco |
author_facet | Gabbani, Alessio Fantechi, Elvira Petrucci, Gaia Campo, Giulio de Julián Fernández, César Ghigna, Paolo Sorace, Lorenzo Bonanni, Valentina Gurioli, Massimo Sangregorio, Claudio Pineider, Francesco |
author_sort | Gabbani, Alessio |
collection | PubMed |
description | [Image: see text] Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with an improved magnetoplasmonic response. In this work, we prepared core@shell nanostructures made of an 8 nm Au core surrounded by an ultrathin iron oxide shell (≤1 nm). The presence of the iron oxide shell was found to significantly enhance the magneto-optical response of the noble metal in the localized surface plasmon region, compared with uncoated Au nanoparticles. With the support of an analytical model, we ascribed the origin of the enhancement to the shell-induced increase in the dielectric permittivity around the Au core. The experiment points out the importance of the spectral position of the plasmonic resonance in determining the magnitude of the magnetoplasmonic response. Moreover, the analytical model proposed here represents a powerful predictive tool for the quantification of the magnetoplasmonic effect based on resonance position engineering, which has significant implications for the design of active magnetoplasmonic devices. |
format | Online Article Text |
id | pubmed-7992377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-79923772021-03-25 Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices Gabbani, Alessio Fantechi, Elvira Petrucci, Gaia Campo, Giulio de Julián Fernández, César Ghigna, Paolo Sorace, Lorenzo Bonanni, Valentina Gurioli, Massimo Sangregorio, Claudio Pineider, Francesco ACS Appl Nano Mater [Image: see text] Plasmon resonance modulation with an external magnetic field (magnetoplasmonics) represents a promising route for the improvement of the sensitivity of plasmon-based refractometric sensing. To this purpose, an accurate material choice is needed to realize hybrid nanostructures with an improved magnetoplasmonic response. In this work, we prepared core@shell nanostructures made of an 8 nm Au core surrounded by an ultrathin iron oxide shell (≤1 nm). The presence of the iron oxide shell was found to significantly enhance the magneto-optical response of the noble metal in the localized surface plasmon region, compared with uncoated Au nanoparticles. With the support of an analytical model, we ascribed the origin of the enhancement to the shell-induced increase in the dielectric permittivity around the Au core. The experiment points out the importance of the spectral position of the plasmonic resonance in determining the magnitude of the magnetoplasmonic response. Moreover, the analytical model proposed here represents a powerful predictive tool for the quantification of the magnetoplasmonic effect based on resonance position engineering, which has significant implications for the design of active magnetoplasmonic devices. American Chemical Society 2021-01-21 2021-02-26 /pmc/articles/PMC7992377/ /pubmed/33778418 http://dx.doi.org/10.1021/acsanm.0c02588 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Gabbani, Alessio Fantechi, Elvira Petrucci, Gaia Campo, Giulio de Julián Fernández, César Ghigna, Paolo Sorace, Lorenzo Bonanni, Valentina Gurioli, Massimo Sangregorio, Claudio Pineider, Francesco Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices |
title | Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response:
Implications for Active Plasmonic Devices |
title_full | Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response:
Implications for Active Plasmonic Devices |
title_fullStr | Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response:
Implications for Active Plasmonic Devices |
title_full_unstemmed | Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response:
Implications for Active Plasmonic Devices |
title_short | Dielectric Effects in FeO(x)-Coated Au Nanoparticles Boost the Magnetoplasmonic Response:
Implications for Active Plasmonic Devices |
title_sort | dielectric effects in feo(x)-coated au nanoparticles boost the magnetoplasmonic response:
implications for active plasmonic devices |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992377/ https://www.ncbi.nlm.nih.gov/pubmed/33778418 http://dx.doi.org/10.1021/acsanm.0c02588 |
work_keys_str_mv | AT gabbanialessio dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices AT fantechielvira dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices AT petruccigaia dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices AT campogiulio dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices AT dejulianfernandezcesar dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices AT ghignapaolo dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices AT soracelorenzo dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices AT bonannivalentina dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices AT guriolimassimo dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices AT sangregorioclaudio dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices AT pineiderfrancesco dielectriceffectsinfeoxcoatedaunanoparticlesboostthemagnetoplasmonicresponseimplicationsforactiveplasmonicdevices |