Cargando…
A participatory modelling approach for investigating the spread of COVID-19 in countries of the Eastern Mediterranean Region to support public health decision-making
Early on in the COVID-19 pandemic, the WHO Eastern Mediterranean Regional Office recognised the importance of epidemiological modelling to forecast the progression of the COVID-19 pandemic to support decisions guiding the implementation of response measures. We established a modelling support team t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992384/ https://www.ncbi.nlm.nih.gov/pubmed/33762253 http://dx.doi.org/10.1136/bmjgh-2021-005207 |
Sumario: | Early on in the COVID-19 pandemic, the WHO Eastern Mediterranean Regional Office recognised the importance of epidemiological modelling to forecast the progression of the COVID-19 pandemic to support decisions guiding the implementation of response measures. We established a modelling support team to facilitate the application of epidemiological modelling analyses in the Eastern Mediterranean Region (EMR) countries. Here, we present an innovative, stepwise approach to participatory modelling of the COVID-19 pandemic that engaged decision-makers and public health professionals from countries throughout all stages of the modelling process. Our approach consisted of first identifying the relevant policy questions, collecting country-specific data and interpreting model findings from a decision-maker’s perspective, as well as communicating model uncertainty. We used a simple modelling methodology that was adaptable to the shortage of epidemiological data, and the limited modelling capacity, in our region. We discuss the benefits of using models to produce rapid decision-making guidance for COVID-19 control in the WHO EMR, as well as challenges that we have experienced regarding conveying uncertainty associated with model results, synthesising and comparing results across multiple modelling approaches, and modelling fragile and conflict-affected states. |
---|