Cargando…
Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis
The oncogene DEK is found fused with the NUP214 gene creating oncoprotein DEK-NUP214 that induces acute myeloid leukemia (AML) in patients, and secreted DEK protein functions as a hematopoietic cytokine to regulate hematopoiesis; however, the intrinsic role of nuclear DEK in hematopoietic stem cells...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992411/ https://www.ncbi.nlm.nih.gov/pubmed/33755722 http://dx.doi.org/10.1084/jem.20201974 |
_version_ | 1783669365759016960 |
---|---|
author | Chen, Zhe Huo, Dawei Li, Lei Liu, Zhilong Li, Zhigang Xu, Shuangnian Huang, Yongxiu Wu, Weiru Zhou, Chengfang Liu, Yuanyuan Kuang, Mei Wu, Feng Li, Hui Qian, Pengxu Song, Guanbin Wu, Xudong Chen, Jieping Hou, Yu |
author_facet | Chen, Zhe Huo, Dawei Li, Lei Liu, Zhilong Li, Zhigang Xu, Shuangnian Huang, Yongxiu Wu, Weiru Zhou, Chengfang Liu, Yuanyuan Kuang, Mei Wu, Feng Li, Hui Qian, Pengxu Song, Guanbin Wu, Xudong Chen, Jieping Hou, Yu |
author_sort | Chen, Zhe |
collection | PubMed |
description | The oncogene DEK is found fused with the NUP214 gene creating oncoprotein DEK-NUP214 that induces acute myeloid leukemia (AML) in patients, and secreted DEK protein functions as a hematopoietic cytokine to regulate hematopoiesis; however, the intrinsic role of nuclear DEK in hematopoietic stem cells (HSCs) remains largely unknown. Here, we show that HSCs lacking DEK display defects in long-term self-renew capacity, eventually resulting in impaired hematopoiesis. DEK deficiency reduces quiescence and accelerates mitochondrial metabolism in HSCs, in part, dependent upon activating mTOR signaling. At the molecular level, DEK recruits the corepressor NCoR1 to repress acetylation of histone 3 at lysine 27 (H3K27ac) and restricts the chromatin accessibility of HSCs, governing the expression of quiescence-associated genes (e.g., Akt1/2, Ccnb2, and p21). Inhibition of mTOR activity largely restores the maintenance and potential of Dek-cKO HSCs. These findings highlight the crucial role of nuclear DEK in preserving HSC potential, uncovering a new link between chromatin remodelers and HSC homeostasis, and have clinical implications. |
format | Online Article Text |
id | pubmed-7992411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-79924112021-11-03 Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis Chen, Zhe Huo, Dawei Li, Lei Liu, Zhilong Li, Zhigang Xu, Shuangnian Huang, Yongxiu Wu, Weiru Zhou, Chengfang Liu, Yuanyuan Kuang, Mei Wu, Feng Li, Hui Qian, Pengxu Song, Guanbin Wu, Xudong Chen, Jieping Hou, Yu J Exp Med Article The oncogene DEK is found fused with the NUP214 gene creating oncoprotein DEK-NUP214 that induces acute myeloid leukemia (AML) in patients, and secreted DEK protein functions as a hematopoietic cytokine to regulate hematopoiesis; however, the intrinsic role of nuclear DEK in hematopoietic stem cells (HSCs) remains largely unknown. Here, we show that HSCs lacking DEK display defects in long-term self-renew capacity, eventually resulting in impaired hematopoiesis. DEK deficiency reduces quiescence and accelerates mitochondrial metabolism in HSCs, in part, dependent upon activating mTOR signaling. At the molecular level, DEK recruits the corepressor NCoR1 to repress acetylation of histone 3 at lysine 27 (H3K27ac) and restricts the chromatin accessibility of HSCs, governing the expression of quiescence-associated genes (e.g., Akt1/2, Ccnb2, and p21). Inhibition of mTOR activity largely restores the maintenance and potential of Dek-cKO HSCs. These findings highlight the crucial role of nuclear DEK in preserving HSC potential, uncovering a new link between chromatin remodelers and HSC homeostasis, and have clinical implications. Rockefeller University Press 2021-03-23 /pmc/articles/PMC7992411/ /pubmed/33755722 http://dx.doi.org/10.1084/jem.20201974 Text en © 2021 Chen et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Article Chen, Zhe Huo, Dawei Li, Lei Liu, Zhilong Li, Zhigang Xu, Shuangnian Huang, Yongxiu Wu, Weiru Zhou, Chengfang Liu, Yuanyuan Kuang, Mei Wu, Feng Li, Hui Qian, Pengxu Song, Guanbin Wu, Xudong Chen, Jieping Hou, Yu Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis |
title | Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis |
title_full | Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis |
title_fullStr | Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis |
title_full_unstemmed | Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis |
title_short | Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis |
title_sort | nuclear dek preserves hematopoietic stem cells potential via ncor1/hdac3-akt1/2-mtor axis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992411/ https://www.ncbi.nlm.nih.gov/pubmed/33755722 http://dx.doi.org/10.1084/jem.20201974 |
work_keys_str_mv | AT chenzhe nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT huodawei nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT lilei nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT liuzhilong nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT lizhigang nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT xushuangnian nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT huangyongxiu nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT wuweiru nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT zhouchengfang nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT liuyuanyuan nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT kuangmei nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT wufeng nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT lihui nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT qianpengxu nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT songguanbin nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT wuxudong nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT chenjieping nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis AT houyu nucleardekpreserveshematopoieticstemcellspotentialviancor1hdac3akt12mtoraxis |