Cargando…
Denoising large-scale biological data using network filters
BACKGROUND: Large-scale biological data sets are often contaminated by noise, which can impede accurate inferences about underlying processes. Such measurement noise can arise from endogenous biological factors like cell cycle and life history variation, and from exogenous technical factors like sam...
Autores principales: | Kavran, Andrew J., Clauset, Aaron |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992843/ https://www.ncbi.nlm.nih.gov/pubmed/33765911 http://dx.doi.org/10.1186/s12859-021-04075-x |
Ejemplares similares
-
Scale-free networks are rare
por: Broido, Anna D., et al.
Publicado: (2019) -
Improved Denoising of Structural Vibration Data Employing Bilateral Filtering
por: Liu, Ning, et al.
Publicado: (2020) -
A Data-Driven Gaussian Process Filter for Electrocardiogram Denoising
por: Dumitru, Mircea, et al.
Publicado: (2023) -
A Residual UNet Denoising Network Based on Multi-Scale Feature Extraction and Attention-Guided Filter
por: Liu, Hualin, et al.
Publicado: (2023) -
Benchmarking data-driven filtering for denoising of TCRpMHC single-cell data
por: Montemurro, Alessandro, et al.
Publicado: (2023)