Cargando…
Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms
BACKGROUND: Phytoplankton blooms are frequent events in coastal areas and increase the production of organic matter that initially shapes the growth of opportunistic heterotrophic bacteria. However, it is unclear how these opportunists are involved in the transformation of dissolved organic matter (...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992965/ https://www.ncbi.nlm.nih.gov/pubmed/33762013 http://dx.doi.org/10.1186/s40168-021-01022-z |
_version_ | 1783669482574577664 |
---|---|
author | Han, Yu Jiao, Nianzhi Zhang, Yao Zhang, Fan He, Chen Liang, Xuejiao Cai, Ruanhong Shi, Quan Tang, Kai |
author_facet | Han, Yu Jiao, Nianzhi Zhang, Yao Zhang, Fan He, Chen Liang, Xuejiao Cai, Ruanhong Shi, Quan Tang, Kai |
author_sort | Han, Yu |
collection | PubMed |
description | BACKGROUND: Phytoplankton blooms are frequent events in coastal areas and increase the production of organic matter that initially shapes the growth of opportunistic heterotrophic bacteria. However, it is unclear how these opportunists are involved in the transformation of dissolved organic matter (DOM) when blooms occur and the subsequent impacts on biogeochemical cycles. RESULTS: We used a combination of genomic, proteomic, and metabolomic approaches to study bacterial diversity, genome traits, and metabolic responses to assess the source and lability of DOM in a spring coastal bloom of Akashiwo sanguinea. We identified molecules that significantly increased during bloom development, predominantly belonging to amino acids, dipeptides, lipids, nucleotides, and nucleosides. The opportunistic members of the bacterial genera Polaribacter, Lentibacter, and Litoricola represented a significant proportion of the free-living and particle-associated bacterial assemblages during the stationary phase of the bloom. Polaribacter marinivivus, Lentibacter algarum, and Litoricola marina were isolated and their genomes exhibited streamlining characterized by small genome size and low GC content and non-coding densities, as well as a smaller number of transporters and peptidases compared to closely related species. However, the core proteomes identified house-keeping functions, such as various substrate transporters, peptidases, motility, chemotaxis, and antioxidants, in response to bloom-derived DOM. We observed a unique metabolic signature for the three species in the utilization of multiple dissolved organic nitrogen compounds. The metabolomic data showed that amino acids and dipeptides (such as isoleucine and proline) were preferentially taken up by P. marinivivus and L. algarum, whereas nucleotides and nucleosides (such as adenosine and purine) were preferentially selected by L. marina. CONCLUSIONS: The results suggest that the enriched DOM in stationary phase of phytoplankton bloom is a result of ammonium depletion. This environment drives genomic streamlining of opportunistic bacteria to exploit their preferred nitrogen-containing compounds and maintain nutrient cycling. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-021-01022-z. |
format | Online Article Text |
id | pubmed-7992965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-79929652021-03-25 Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms Han, Yu Jiao, Nianzhi Zhang, Yao Zhang, Fan He, Chen Liang, Xuejiao Cai, Ruanhong Shi, Quan Tang, Kai Microbiome Research BACKGROUND: Phytoplankton blooms are frequent events in coastal areas and increase the production of organic matter that initially shapes the growth of opportunistic heterotrophic bacteria. However, it is unclear how these opportunists are involved in the transformation of dissolved organic matter (DOM) when blooms occur and the subsequent impacts on biogeochemical cycles. RESULTS: We used a combination of genomic, proteomic, and metabolomic approaches to study bacterial diversity, genome traits, and metabolic responses to assess the source and lability of DOM in a spring coastal bloom of Akashiwo sanguinea. We identified molecules that significantly increased during bloom development, predominantly belonging to amino acids, dipeptides, lipids, nucleotides, and nucleosides. The opportunistic members of the bacterial genera Polaribacter, Lentibacter, and Litoricola represented a significant proportion of the free-living and particle-associated bacterial assemblages during the stationary phase of the bloom. Polaribacter marinivivus, Lentibacter algarum, and Litoricola marina were isolated and their genomes exhibited streamlining characterized by small genome size and low GC content and non-coding densities, as well as a smaller number of transporters and peptidases compared to closely related species. However, the core proteomes identified house-keeping functions, such as various substrate transporters, peptidases, motility, chemotaxis, and antioxidants, in response to bloom-derived DOM. We observed a unique metabolic signature for the three species in the utilization of multiple dissolved organic nitrogen compounds. The metabolomic data showed that amino acids and dipeptides (such as isoleucine and proline) were preferentially taken up by P. marinivivus and L. algarum, whereas nucleotides and nucleosides (such as adenosine and purine) were preferentially selected by L. marina. CONCLUSIONS: The results suggest that the enriched DOM in stationary phase of phytoplankton bloom is a result of ammonium depletion. This environment drives genomic streamlining of opportunistic bacteria to exploit their preferred nitrogen-containing compounds and maintain nutrient cycling. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-021-01022-z. BioMed Central 2021-03-24 /pmc/articles/PMC7992965/ /pubmed/33762013 http://dx.doi.org/10.1186/s40168-021-01022-z Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Han, Yu Jiao, Nianzhi Zhang, Yao Zhang, Fan He, Chen Liang, Xuejiao Cai, Ruanhong Shi, Quan Tang, Kai Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms |
title | Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms |
title_full | Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms |
title_fullStr | Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms |
title_full_unstemmed | Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms |
title_short | Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms |
title_sort | opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992965/ https://www.ncbi.nlm.nih.gov/pubmed/33762013 http://dx.doi.org/10.1186/s40168-021-01022-z |
work_keys_str_mv | AT hanyu opportunisticbacteriawithreducedgenomesareeffectivecompetitorsfororganicnitrogencompoundsincoastaldinoflagellateblooms AT jiaonianzhi opportunisticbacteriawithreducedgenomesareeffectivecompetitorsfororganicnitrogencompoundsincoastaldinoflagellateblooms AT zhangyao opportunisticbacteriawithreducedgenomesareeffectivecompetitorsfororganicnitrogencompoundsincoastaldinoflagellateblooms AT zhangfan opportunisticbacteriawithreducedgenomesareeffectivecompetitorsfororganicnitrogencompoundsincoastaldinoflagellateblooms AT hechen opportunisticbacteriawithreducedgenomesareeffectivecompetitorsfororganicnitrogencompoundsincoastaldinoflagellateblooms AT liangxuejiao opportunisticbacteriawithreducedgenomesareeffectivecompetitorsfororganicnitrogencompoundsincoastaldinoflagellateblooms AT cairuanhong opportunisticbacteriawithreducedgenomesareeffectivecompetitorsfororganicnitrogencompoundsincoastaldinoflagellateblooms AT shiquan opportunisticbacteriawithreducedgenomesareeffectivecompetitorsfororganicnitrogencompoundsincoastaldinoflagellateblooms AT tangkai opportunisticbacteriawithreducedgenomesareeffectivecompetitorsfororganicnitrogencompoundsincoastaldinoflagellateblooms |