Cargando…

A step in the Delaunay mosaic of order k

Given a locally finite set [Formula: see text] and an integer [Formula: see text] , we consider the function [Formula: see text] on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf T...

Descripción completa

Detalles Bibliográficos
Autores principales: Edelsbrunner, Herbert, Nikitenko, Anton, Osang, Georg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993303/
https://www.ncbi.nlm.nih.gov/pubmed/33867592
http://dx.doi.org/10.1007/s00022-021-00577-4
Descripción
Sumario:Given a locally finite set [Formula: see text] and an integer [Formula: see text] , we consider the function [Formula: see text] on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space.