Cargando…
A step in the Delaunay mosaic of order k
Given a locally finite set [Formula: see text] and an integer [Formula: see text] , we consider the function [Formula: see text] on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf T...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993303/ https://www.ncbi.nlm.nih.gov/pubmed/33867592 http://dx.doi.org/10.1007/s00022-021-00577-4 |
_version_ | 1783669536816365568 |
---|---|
author | Edelsbrunner, Herbert Nikitenko, Anton Osang, Georg |
author_facet | Edelsbrunner, Herbert Nikitenko, Anton Osang, Georg |
author_sort | Edelsbrunner, Herbert |
collection | PubMed |
description | Given a locally finite set [Formula: see text] and an integer [Formula: see text] , we consider the function [Formula: see text] on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space. |
format | Online Article Text |
id | pubmed-7993303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-79933032021-04-16 A step in the Delaunay mosaic of order k Edelsbrunner, Herbert Nikitenko, Anton Osang, Georg J Geom Article Given a locally finite set [Formula: see text] and an integer [Formula: see text] , we consider the function [Formula: see text] on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space. Springer International Publishing 2021-03-16 2021 /pmc/articles/PMC7993303/ /pubmed/33867592 http://dx.doi.org/10.1007/s00022-021-00577-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Edelsbrunner, Herbert Nikitenko, Anton Osang, Georg A step in the Delaunay mosaic of order k |
title | A step in the Delaunay mosaic of order k |
title_full | A step in the Delaunay mosaic of order k |
title_fullStr | A step in the Delaunay mosaic of order k |
title_full_unstemmed | A step in the Delaunay mosaic of order k |
title_short | A step in the Delaunay mosaic of order k |
title_sort | step in the delaunay mosaic of order k |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993303/ https://www.ncbi.nlm.nih.gov/pubmed/33867592 http://dx.doi.org/10.1007/s00022-021-00577-4 |
work_keys_str_mv | AT edelsbrunnerherbert astepinthedelaunaymosaicoforderk AT nikitenkoanton astepinthedelaunaymosaicoforderk AT osanggeorg astepinthedelaunaymosaicoforderk AT edelsbrunnerherbert stepinthedelaunaymosaicoforderk AT nikitenkoanton stepinthedelaunaymosaicoforderk AT osanggeorg stepinthedelaunaymosaicoforderk |