Cargando…
Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals
BACKGROUND: In octocorals (Cnidaria Octocorallia), the functional relationship between host health and its symbiotic consortium has yet to be determined. Here, we employed comparative metagenomics to uncover the distinct functional and phylogenetic features of the microbiomes of healthy Eunicella ga...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993494/ https://www.ncbi.nlm.nih.gov/pubmed/33766108 http://dx.doi.org/10.1186/s40168-021-01031-y |
_version_ | 1783669572258234368 |
---|---|
author | Keller-Costa, T. Lago-Lestón, A. Saraiva, J. P. Toscan, R. Silva, S. G. Gonçalves, J. Cox, C. J. Kyrpides, N. Nunes da Rocha, U. Costa, R. |
author_facet | Keller-Costa, T. Lago-Lestón, A. Saraiva, J. P. Toscan, R. Silva, S. G. Gonçalves, J. Cox, C. J. Kyrpides, N. Nunes da Rocha, U. Costa, R. |
author_sort | Keller-Costa, T. |
collection | PubMed |
description | BACKGROUND: In octocorals (Cnidaria Octocorallia), the functional relationship between host health and its symbiotic consortium has yet to be determined. Here, we employed comparative metagenomics to uncover the distinct functional and phylogenetic features of the microbiomes of healthy Eunicella gazella, Eunicella verrucosa, and Leptogorgia sarmentosa tissues, in contrast with the microbiomes found in seawater and sediments. We further explored how the octocoral microbiome shifts to a pathobiome state in E. gazella. RESULTS: Multivariate analyses based on 16S rRNA genes, Clusters of Orthologous Groups of proteins (COGs), Protein families (Pfams), and secondary metabolite-biosynthetic gene clusters annotated from 20 Illumina-sequenced metagenomes each revealed separate clustering of the prokaryotic communities of healthy tissue samples of the three octocoral species from those of necrotic E. gazella tissue and surrounding environments. While the healthy octocoral microbiome was distinguished by so-far uncultivated Endozoicomonadaceae, Oceanospirillales, and Alteromonadales phylotypes in all host species, a pronounced increase of Flavobacteriaceae and Alphaproteobacteria, originating from seawater, was observed in necrotic E. gazella tissue. Increased abundances of eukaryotic-like proteins, exonucleases, restriction endonucleases, CRISPR/Cas proteins, and genes encoding for heat-shock proteins, inorganic ion transport, and iron storage distinguished the prokaryotic communities of healthy octocoral tissue regardless of the host species. An increase of arginase and nitric oxide reductase genes, observed in necrotic E. gazella tissues, suggests the existence of a mechanism for suppression of nitrite oxide production by which octocoral pathogens may overcome the host’s immune system. CONCLUSIONS: This is the first study to employ primer-less, shotgun metagenome sequencing to unveil the taxonomic, functional, and secondary metabolism features of prokaryotic communities in octocorals. Our analyses reveal that the octocoral microbiome is distinct from those of the environmental surroundings, is host genus (but not species) specific, and undergoes large, complex structural changes in the transition to the dysbiotic state. Host-symbiont recognition, abiotic-stress response, micronutrient acquisition, and an antiviral defense arsenal comprising multiple restriction endonucleases, CRISPR/Cas systems, and phage lysogenization regulators are signatures of prokaryotic communities in octocorals. We argue that these features collectively contribute to the stabilization of symbiosis in the octocoral holobiont and constitute beneficial traits that can guide future studies on coral reef conservation and microbiome therapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-021-01031-y. |
format | Online Article Text |
id | pubmed-7993494 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-79934942021-03-26 Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals Keller-Costa, T. Lago-Lestón, A. Saraiva, J. P. Toscan, R. Silva, S. G. Gonçalves, J. Cox, C. J. Kyrpides, N. Nunes da Rocha, U. Costa, R. Microbiome Research BACKGROUND: In octocorals (Cnidaria Octocorallia), the functional relationship between host health and its symbiotic consortium has yet to be determined. Here, we employed comparative metagenomics to uncover the distinct functional and phylogenetic features of the microbiomes of healthy Eunicella gazella, Eunicella verrucosa, and Leptogorgia sarmentosa tissues, in contrast with the microbiomes found in seawater and sediments. We further explored how the octocoral microbiome shifts to a pathobiome state in E. gazella. RESULTS: Multivariate analyses based on 16S rRNA genes, Clusters of Orthologous Groups of proteins (COGs), Protein families (Pfams), and secondary metabolite-biosynthetic gene clusters annotated from 20 Illumina-sequenced metagenomes each revealed separate clustering of the prokaryotic communities of healthy tissue samples of the three octocoral species from those of necrotic E. gazella tissue and surrounding environments. While the healthy octocoral microbiome was distinguished by so-far uncultivated Endozoicomonadaceae, Oceanospirillales, and Alteromonadales phylotypes in all host species, a pronounced increase of Flavobacteriaceae and Alphaproteobacteria, originating from seawater, was observed in necrotic E. gazella tissue. Increased abundances of eukaryotic-like proteins, exonucleases, restriction endonucleases, CRISPR/Cas proteins, and genes encoding for heat-shock proteins, inorganic ion transport, and iron storage distinguished the prokaryotic communities of healthy octocoral tissue regardless of the host species. An increase of arginase and nitric oxide reductase genes, observed in necrotic E. gazella tissues, suggests the existence of a mechanism for suppression of nitrite oxide production by which octocoral pathogens may overcome the host’s immune system. CONCLUSIONS: This is the first study to employ primer-less, shotgun metagenome sequencing to unveil the taxonomic, functional, and secondary metabolism features of prokaryotic communities in octocorals. Our analyses reveal that the octocoral microbiome is distinct from those of the environmental surroundings, is host genus (but not species) specific, and undergoes large, complex structural changes in the transition to the dysbiotic state. Host-symbiont recognition, abiotic-stress response, micronutrient acquisition, and an antiviral defense arsenal comprising multiple restriction endonucleases, CRISPR/Cas systems, and phage lysogenization regulators are signatures of prokaryotic communities in octocorals. We argue that these features collectively contribute to the stabilization of symbiosis in the octocoral holobiont and constitute beneficial traits that can guide future studies on coral reef conservation and microbiome therapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-021-01031-y. BioMed Central 2021-03-25 /pmc/articles/PMC7993494/ /pubmed/33766108 http://dx.doi.org/10.1186/s40168-021-01031-y Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Keller-Costa, T. Lago-Lestón, A. Saraiva, J. P. Toscan, R. Silva, S. G. Gonçalves, J. Cox, C. J. Kyrpides, N. Nunes da Rocha, U. Costa, R. Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals |
title | Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals |
title_full | Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals |
title_fullStr | Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals |
title_full_unstemmed | Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals |
title_short | Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals |
title_sort | metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993494/ https://www.ncbi.nlm.nih.gov/pubmed/33766108 http://dx.doi.org/10.1186/s40168-021-01031-y |
work_keys_str_mv | AT kellercostat metagenomicinsightsintothetaxonomyfunctionanddysbiosisofprokaryoticcommunitiesinoctocorals AT lagolestona metagenomicinsightsintothetaxonomyfunctionanddysbiosisofprokaryoticcommunitiesinoctocorals AT saraivajp metagenomicinsightsintothetaxonomyfunctionanddysbiosisofprokaryoticcommunitiesinoctocorals AT toscanr metagenomicinsightsintothetaxonomyfunctionanddysbiosisofprokaryoticcommunitiesinoctocorals AT silvasg metagenomicinsightsintothetaxonomyfunctionanddysbiosisofprokaryoticcommunitiesinoctocorals AT goncalvesj metagenomicinsightsintothetaxonomyfunctionanddysbiosisofprokaryoticcommunitiesinoctocorals AT coxcj metagenomicinsightsintothetaxonomyfunctionanddysbiosisofprokaryoticcommunitiesinoctocorals AT kyrpidesn metagenomicinsightsintothetaxonomyfunctionanddysbiosisofprokaryoticcommunitiesinoctocorals AT nunesdarochau metagenomicinsightsintothetaxonomyfunctionanddysbiosisofprokaryoticcommunitiesinoctocorals AT costar metagenomicinsightsintothetaxonomyfunctionanddysbiosisofprokaryoticcommunitiesinoctocorals |