Cargando…
CPI-1189 protects neuronal cells from oxygen glucose deprivation/re-oxygenation-induced oxidative injury and cell death
Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) induces profound oxidative injury and neuronal cell death. It mimics ischemia-reperfusion neuronal injury. CPI-1189 is a novel tumor necrosis factor alpha-inhibiting compound with potential neuroprotective function. Here in SH-SY5Y neuronal cell...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993696/ https://www.ncbi.nlm.nih.gov/pubmed/33621193 http://dx.doi.org/10.18632/aging.202528 |
Sumario: | Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) induces profound oxidative injury and neuronal cell death. It mimics ischemia-reperfusion neuronal injury. CPI-1189 is a novel tumor necrosis factor alpha-inhibiting compound with potential neuroprotective function. Here in SH-SY5Y neuronal cells and primary murine cortical neurons, CPI-1189 pretreatment potently inhibited OGDR-induced viability reduction and cell death. In OGDR-stimulated neuronal cells, p38 phosphorylation was blocked by CPI-1189. In addition, CPI-1189 alleviated OGDR-induced reactive oxygen species production, lipid peroxidation, and glutathione consumption. OGDR-induced neuronal cell apoptosis was also inhibited by CPI-1189 pretreatment. Furthermore, in SH-SY5Y cells and cortical neurons, CPI-1189 alleviated OGDR-induced programmed necrosis by inhibiting mitochondrial p53-cyclophilin D-adenine nucleotide translocase 1 association, mitochondrial depolarization, and lactate dehydrogenase release to the medium. In summary, CPI-1189 potently inhibited OGDR-induced oxidative injury and neuronal cell death. |
---|