Cargando…

Potential role of glucosamine-phosphate N-acetyltransferase 1 in the development of lung adenocarcinoma

Glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) is a key enzyme associated with glucose metabolism and uridine diphosphate-N-acetylglucosamine biosynthesis. Abnormal GNPNAT1 expression might be associated with carcinogenesis. We analyzed multiple lung adenocarcinoma (LUAD) gene expression data...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shengqiang, Zhang, Hongyan, Li, Huawei, Guo, Jida, Wang, Jun, Zhang, Linyou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993716/
https://www.ncbi.nlm.nih.gov/pubmed/33686019
http://dx.doi.org/10.18632/aging.202604
Descripción
Sumario:Glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) is a key enzyme associated with glucose metabolism and uridine diphosphate-N-acetylglucosamine biosynthesis. Abnormal GNPNAT1 expression might be associated with carcinogenesis. We analyzed multiple lung adenocarcinoma (LUAD) gene expression databases and verified GNPNAT1 higher expression in LUAD tumor tissues than in normal tissues. Moreover, we analyzed the survival relationship between LUAD patients’ clinical status and GNPNAT1 expression, and found higher GNPNAT1 expression in LUAD patients with unfavorable prognosis. We built GNPNAT1 gene co-expression networks and further annotated the co-expressed genes’ Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and various associated regulatory factors. These co-expression genes’ functional networks mainly participate in chromosome segregation, RNA metabolic process, and RNA transport. We analyzed GNPNAT1 genetic alterations and co-occurrence networks, and the functional networks of these genes showed that GNPNAT1 participates in multiple steps of cell cycle transition and in the development of some cancers. We assessed the correlation between GNPNAT1 expression and cancer immune infiltrates and showed that GNPNAT1 expression is correlated with several immune cells, chemokines, and immunomodulators in LUAD. We found that GNPNAT1 correlates with LUAD development and prognosis, laying a foundation for further research, especially in immunotherapy.