Cargando…

Ablation of CRBN induces loss of type I collagen and SCH in mouse skin by fibroblast senescence via the p38 MAPK pathway

Cereblon (CRBN) is a substrate receptor of the cullin-RING E3 ubiquitin ligase (CRL) complex that mediates the ubiquitination of several substrates. In this study, CRBN knockout (KO) mice exhibited decreased levels of stratum corneum hydration (SCH) and collagen I expression with an elevated protein...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeon, Seungje, Yoon, Yi-Seul, Kim, Hyoung Kyu, Han, Jin, Lee, Kwang Min, Seol, Jung Eun, Cho, Steve K., Park, Chul-Seung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993720/
https://www.ncbi.nlm.nih.gov/pubmed/33658395
http://dx.doi.org/10.18632/aging.202744
Descripción
Sumario:Cereblon (CRBN) is a substrate receptor of the cullin-RING E3 ubiquitin ligase (CRL) complex that mediates the ubiquitination of several substrates. In this study, CRBN knockout (KO) mice exhibited decreased levels of stratum corneum hydration (SCH) and collagen I expression with an elevated protein level of matrix metalloprotease 1 (MMP1). The absence of cereblon in the skin of CRBN KO mice mimics the damage caused by narrowband ultraviolet B (NB-UVB). The primary CRBN deficient mouse embryonic fibroblasts (MEFs) undergo G2/M-arrested premature senescence via protein signaling of p38 MAPK and its dependent p53/p21pathway. The absence of CRBN induced the markers of cellular senescence, such as the senescence-associated heterochromatin foci (SAHF), SA-β-Gal staining, and p21 upregulation while the ectopic expression of CRBN reversed the phenotypes of SA-β-Gal staining and p21 upregulation. Reversion of the decreased protein level of collagen I was demonstrated after the reintroduction of the CRBN gene back into CRBN KO MEFs, validating the promising role of CRBN as a potential regulator for the function of the skin barrier and its cellular homeostasis.