Cargando…
Artificial intelligence prediction model for overall survival of clear cell renal cell carcinoma based on a 21-gene molecular prognostic score system
We developed and validated a new prognostic model for predicting the overall survival in clear cell renal cell carcinoma (ccRCC) patients. In this study, artificial intelligence (AI) algorithms including random forest and neural network were trained to build a molecular prognostic score (mPS) system...
Autores principales: | Peng, Qiliang, Shen, Yi, Fu, Kai, Dai, Zheng, Jin, Lu, Yang, Dongrong, Zhu, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993746/ https://www.ncbi.nlm.nih.gov/pubmed/33686949 http://dx.doi.org/10.18632/aging.202594 |
Ejemplares similares
-
Development and validation of an integrative methylation signature and nomogram for predicting survival in clear cell renal cell carcinoma
por: Peng, Qiliang, et al.
Publicado: (2020) -
Artificial intelligence-based prediction of overall survival in metastatic renal cell carcinoma
por: Barkan, Ella, et al.
Publicado: (2023) -
An immune scores-based nomogram for predicting overall survival in patients with clear cell renal cell carcinoma
por: Wu, Zhulin, et al.
Publicado: (2020) -
Prognostic role of PHYH for overall survival (OS) in clear cell renal cell carcinoma (ccRCC)
por: Zhengqi, Qiu, et al.
Publicado: (2021) -
ABCG2 is a potential prognostic marker of overall survival in patients with clear cell renal cell carcinoma
por: Wang, Haofei, et al.
Publicado: (2017)