Cargando…
Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields
Crop yield monitoring demonstrated the potential to improve agricultural productivity through improved crop breeding, farm management and commodity planning. Remote and proximal sensing offer the possibility to cut crop monitoring costs traditionally associated with surveys and censuses. Fraction of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993797/ https://www.ncbi.nlm.nih.gov/pubmed/33765103 http://dx.doi.org/10.1371/journal.pone.0249136 |
_version_ | 1783669628130557952 |
---|---|
author | Habyarimana, Ephrem Baloch, Faheem S. |
author_facet | Habyarimana, Ephrem Baloch, Faheem S. |
author_sort | Habyarimana, Ephrem |
collection | PubMed |
description | Crop yield monitoring demonstrated the potential to improve agricultural productivity through improved crop breeding, farm management and commodity planning. Remote and proximal sensing offer the possibility to cut crop monitoring costs traditionally associated with surveys and censuses. Fraction of absorbed photosynthetically active radiation (fAPAR), chlorophyll concentration (CI) and normalized difference vegetation (NDVI) indices were used in crop monitoring, but their comparative performances in sorghum monitoring is lacking. This work aimed therefore at closing this gap by evaluating the performance of machine learning modelling of in-season sorghum biomass yields based on Sentinel-2-derived fAPAR and simpler high-throughput optical handheld meters-derived NDVI and CI calculated from sorghum plants reflectance. Bayesian ridge regression showed good cross-validated performance, and high reliability (R(2) = 35%) and low bias (mean absolute prediction error, MAPE = 0.4%) during the validation step. Hand-held optical meter-derived CI and Sentinel-2-derived fAPAR showed comparable effects on machine learning performance, but CI outperformed NDVI and was therefore considered as a good alternative to Sentinel-2’s fAPAR. The best times to sample the vegetation indices were the months of June (second half) and July. The results obtained in this work will serve several purposes including improvements in plant breeding, farming management and sorghum biomass yield forecasting at extension services and policy making levels. |
format | Online Article Text |
id | pubmed-7993797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79937972021-04-05 Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields Habyarimana, Ephrem Baloch, Faheem S. PLoS One Research Article Crop yield monitoring demonstrated the potential to improve agricultural productivity through improved crop breeding, farm management and commodity planning. Remote and proximal sensing offer the possibility to cut crop monitoring costs traditionally associated with surveys and censuses. Fraction of absorbed photosynthetically active radiation (fAPAR), chlorophyll concentration (CI) and normalized difference vegetation (NDVI) indices were used in crop monitoring, but their comparative performances in sorghum monitoring is lacking. This work aimed therefore at closing this gap by evaluating the performance of machine learning modelling of in-season sorghum biomass yields based on Sentinel-2-derived fAPAR and simpler high-throughput optical handheld meters-derived NDVI and CI calculated from sorghum plants reflectance. Bayesian ridge regression showed good cross-validated performance, and high reliability (R(2) = 35%) and low bias (mean absolute prediction error, MAPE = 0.4%) during the validation step. Hand-held optical meter-derived CI and Sentinel-2-derived fAPAR showed comparable effects on machine learning performance, but CI outperformed NDVI and was therefore considered as a good alternative to Sentinel-2’s fAPAR. The best times to sample the vegetation indices were the months of June (second half) and July. The results obtained in this work will serve several purposes including improvements in plant breeding, farming management and sorghum biomass yield forecasting at extension services and policy making levels. Public Library of Science 2021-03-25 /pmc/articles/PMC7993797/ /pubmed/33765103 http://dx.doi.org/10.1371/journal.pone.0249136 Text en © 2021 Habyarimana, Baloch http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Habyarimana, Ephrem Baloch, Faheem S. Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields |
title | Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields |
title_full | Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields |
title_fullStr | Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields |
title_full_unstemmed | Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields |
title_short | Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields |
title_sort | machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993797/ https://www.ncbi.nlm.nih.gov/pubmed/33765103 http://dx.doi.org/10.1371/journal.pone.0249136 |
work_keys_str_mv | AT habyarimanaephrem machinelearningmodelsbasedonremoteandproximalsensingaspotentialmethodsforinseasonbiomassyieldspredictionincommercialsorghumfields AT balochfaheems machinelearningmodelsbasedonremoteandproximalsensingaspotentialmethodsforinseasonbiomassyieldspredictionincommercialsorghumfields |