Cargando…
Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields
Crop yield monitoring demonstrated the potential to improve agricultural productivity through improved crop breeding, farm management and commodity planning. Remote and proximal sensing offer the possibility to cut crop monitoring costs traditionally associated with surveys and censuses. Fraction of...
Autores principales: | Habyarimana, Ephrem, Baloch, Faheem S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7993797/ https://www.ncbi.nlm.nih.gov/pubmed/33765103 http://dx.doi.org/10.1371/journal.pone.0249136 |
Ejemplares similares
-
Genomic Selection for Optimum Index with Dry Biomass Yield, Dry Mass Fraction of Fresh Material, and Plant Height in Biomass Sorghum
por: Habyarimana, Ephrem, et al.
Publicado: (2020) -
Genome-Wide Association Study for Biomass Related Traits in a Panel of Sorghum bicolor and S. bicolor × S. halepense Populations
por: Habyarimana, Ephrem, et al.
Publicado: (2020) -
Whole-genome resequencing of Sorghum bicolor and S. bicolor × S. halepense lines provides new insights for improving plant agroecological characteristics
por: Habyarimana, Ephrem, et al.
Publicado: (2022) -
Genome-wide association mapping of total antioxidant capacity, phenols, tannins, and flavonoids in a panel of Sorghum bicolor and S. bicolor × S. halepense populations using multi-locus models
por: Habyarimana, Ephrem, et al.
Publicado: (2019) -
Genomic Selection for Antioxidant Production in a Panel of Sorghum bicolor and S. bicolor × S. halepense Lines
por: Habyarimana, Ephrem, et al.
Publicado: (2019)