Cargando…
Predicting the spread of COVID-19 in Italy using machine learning: Do socio-economic factors matter?
We exploit the provincial variability of COVID-19 cases registered in Italy to select the territorial predictors of the pandemic. Absent an established theoretical diffusion model, we apply machine learning to isolate, among 77 potential predictors, those that minimize the out-of-sample prediction e...
Autores principales: | Bloise, Francesco, Tancioni, Massimiliano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994006/ https://www.ncbi.nlm.nih.gov/pubmed/35317020 http://dx.doi.org/10.1016/j.strueco.2021.01.001 |
Ejemplares similares
-
Socio-economic impact of epilepsy in Italy
por: Mennini, Francesco Saverio, et al.
Publicado: (2022) -
Applications of machine learning techniques to predict filariasis using socio-economic factors
por: Kondeti, Phani Krishna, et al.
Publicado: (2019) -
The role of the socio-economic context in the spread of the first wave of COVID-19 in the Marche Region (central Italy)
por: Gioia, Eleonora, et al.
Publicado: (2022) -
Demographic and socio-economic factors, and healthcare resource indicators associated with the rapid spread of COVID-19 in Northern Italy: An ecological study
por: Buja, Alessandra, et al.
Publicado: (2020) -
Socio-economic and environmental factors in the global spread of COVID-19 outbreak
por: Zoungrana, Tibi Didier, et al.
Publicado: (2022)