Cargando…
Machine Learning for Building Immune Genetic Model in Hepatocellular Carcinoma Patients
BACKGROUND: Hepatocellular carcinoma (HCC) is the leading liver cancer with special immune microenvironment, which played vital roles in tumor relapse and poor drug responses. In this study, we aimed to explore the prognostic immune signatures in HCC and tried to construct an immune-risk model for p...
Autores principales: | Liu, Jun, Chen, Zheng, Li, Wenli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994091/ https://www.ncbi.nlm.nih.gov/pubmed/33790969 http://dx.doi.org/10.1155/2021/6676537 |
Ejemplares similares
-
Machine Learning Screens Potential Drugs Targeting a Prognostic Gene Signature Associated With Proliferation in Hepatocellular Carcinoma
por: Liu, Jun, et al.
Publicado: (2022) -
Machine learning-based prognostic modeling of lysosome-related genes for predicting prognosis and immune status of patients with hepatocellular carcinoma
por: Li, Wenhua, et al.
Publicado: (2023) -
Immune system-associated genes increase malignant progression and can be used to predict clinical outcome in patients with hepatocellular carcinoma
por: Huang, Rongfu, et al.
Publicado: (2020) -
Current Status and Analysis of Machine Learning in Hepatocellular Carcinoma
por: Feng, Sijia, et al.
Publicado: (2023) -
Physics-aware training for the physical machine learning model building
por: Sun, Xuecong, et al.
Publicado: (2022)