Cargando…
Predicting treatment response from longitudinal images using multi-task deep learning
Radiographic imaging is routinely used to evaluate treatment response in solid tumors. Current imaging response metrics do not reliably predict the underlying biological response. Here, we present a multi-task deep learning approach that allows simultaneous tumor segmentation and response prediction...
Autores principales: | Jin, Cheng, Yu, Heng, Ke, Jia, Ding, Peirong, Yi, Yongju, Jiang, Xiaofeng, Duan, Xin, Tang, Jinghua, Chang, Daniel T., Wu, Xiaojian, Gao, Feng, Li, Ruijiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994301/ https://www.ncbi.nlm.nih.gov/pubmed/33767170 http://dx.doi.org/10.1038/s41467-021-22188-y |
Ejemplares similares
-
Multi-task deep learning network to predict future macrovascular invasion in hepatocellular carcinoma
por: Fu, Sirui, et al.
Publicado: (2021) -
A transformer-based multi-task deep learning model for simultaneous infiltrated brain area identification and segmentation of gliomas
por: Li, Yin, et al.
Publicado: (2023) -
Modeling longitudinal imaging biomarkers with parametric Bayesian multi‐task learning
por: Aksman, Leon M., et al.
Publicado: (2019) -
A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants
por: He, Lili, et al.
Publicado: (2020) -
Explainable multi-task learning for multi-modality biological data analysis
por: Tang, Xin, et al.
Publicado: (2023)