Cargando…
Applying a bagging ensemble machine learning approach to predict functional outcome of schizophrenia with clinical symptoms and cognitive functions
It has been suggested that the relationship between cognitive function and functional outcome in schizophrenia is mediated by clinical symptoms, while functional outcome is assessed by the Quality of Life Scale (QLS) and the Global Assessment of Functioning (GAF) Scale. To determine the outcome asse...
Autores principales: | Lin, Eugene, Lin, Chieh-Hsin, Lane, Hsien-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994315/ https://www.ncbi.nlm.nih.gov/pubmed/33767310 http://dx.doi.org/10.1038/s41598-021-86382-0 |
Ejemplares similares
-
Prediction of functional outcomes of schizophrenia with genetic biomarkers using a bagging ensemble machine learning method with feature selection
por: Lin, Eugene, et al.
Publicado: (2021) -
An Ensemble Approach to Predict Schizophrenia Using Protein Data in the N-methyl-D-Aspartate Receptor (NMDAR) and Tryptophan Catabolic Pathways
por: Lin, Eugene, et al.
Publicado: (2020) -
Differential Impacts of Endogenous Antioxidants on Clinical Symptoms and Cognitive Function in Acute and Chronic Schizophrenia Patients
por: Lin, Chieh-Hsin, et al.
Publicado: (2023) -
Combination of G72 Genetic Variation and G72 Protein Level to Detect Schizophrenia: Machine Learning Approaches
por: Lin, Eugene, et al.
Publicado: (2018) -
Machine Learning and Deep Learning for the Pharmacogenomics of Antidepressant Treatments
por: Lin, Eugene, et al.
Publicado: (2021)