Cargando…
CellMixS: quantifying and visualizing batch effects in single-cell RNA-seq data
A key challenge in single-cell RNA-sequencing (scRNA-seq) data analysis is batch effects that can obscure the biological signal of interest. Although there are various tools and methods to correct for batch effects, their performance can vary. Therefore, it is important to understand how batch effec...
Autores principales: | Lütge, Almut, Zyprych-Walczak, Joanna, Brykczynska Kunzmann, Urszula, Crowell, Helena L, Calini, Daniela, Malhotra, Dheeraj, Soneson, Charlotte, Robinson, Mark D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994321/ https://www.ncbi.nlm.nih.gov/pubmed/33758076 http://dx.doi.org/10.26508/lsa.202001004 |
Ejemplares similares
-
muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data
por: Crowell, Helena L., et al.
Publicado: (2020) -
A junction coverage compatibility score to quantify the reliability of transcript abundance estimates and annotation catalogs
por: Soneson, Charlotte, et al.
Publicado: (2019) -
The shaky foundations of simulating single-cell RNA sequencing data
por: Crowell, Helena L., et al.
Publicado: (2023) -
A systematic performance evaluation of clustering methods for single-cell RNA-seq data
por: Duò, Angelo, et al.
Publicado: (2020) -
Batch Effect Confounding Leads to Strong Bias in Performance Estimates Obtained by Cross-Validation
por: Soneson, Charlotte, et al.
Publicado: (2014)