Cargando…

Oncoproteins of High-Risk HPV and EBV Cooperate to Enhance Cell Motility and Invasion of Human Breast Cancer Cells via Erk1/Erk2 and β-Catenin Signaling Pathways

Breast cancer is a leading cause of death in women around the world. Most breast cancer-related deaths are a result of complications from the metastatic spread. Several recent studies reported that high-risk human papillomaviruses (HPVs) and Epstein–Barr virus (EBV) are co-presented in different typ...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Ishita, Jabeen, Ayesha, Vranic, Semir, Al Moustafa, Ala-Eddin, Al-Thawadi, Hamda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994530/
https://www.ncbi.nlm.nih.gov/pubmed/33777781
http://dx.doi.org/10.3389/fonc.2021.630408
Descripción
Sumario:Breast cancer is a leading cause of death in women around the world. Most breast cancer-related deaths are a result of complications from the metastatic spread. Several recent studies reported that high-risk human papillomaviruses (HPVs) and Epstein–Barr virus (EBV) are co-presented in different types of human carcinomas including breast; however, the cooperative effects between high-risk HPVs and EBV oncoproteins in human breast cancer have not been investigated yet. Thus, we herein explored the cooperation outcome between E6/E7 and latent membrane protein 1 (LMP1) oncoproteins of high-risk HPV type 16 and EBV, respectively, in two human breast cancer cell lines, MCF7 and MDA-MB-231. Our data revealed that the cooperation of E6/E7 and LMP1 oncoproteins stimulates cell proliferation and deregulates cell cycle progression of human breast cancer and normal mammary cells; in parallel, we noted that E6/E7/LMP1 incite colony formation of both breast cancer cell lines but not normal cells. More significantly, our results point out that the co-expression of E6/E7 and LMP1 oncoproteins enhances cell motility and invasion of MCF7 and MDA-MB-231 cell lines; this is accompanied by deregulation of epithelial–mesenchymal transition biomarkers including E-cadherin, β-catenin, fascin, and vimentin. The molecular pathway analysis of HPV and EBV oncoproteins cooperation shows that it can enhance the phosphorylation of extracellular signal-regulated kinases (Erk1/Erk2) in addition to β-catenin, which could be behind the effect of this cooperation in our cell models. The study clearly suggests that high-risk HPV and EBV coinfection can play an important role in breast cancer progression via Erk1/Erk2 and β-catenin signaling pathways.