Cargando…
Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data
Clustering is a critical step in single cell-based studies. Most existing methods support unsupervised clustering without the a priori exploitation of any domain knowledge. When confronted by the high dimensionality and pervasive dropout events of scRNA-Seq data, purely unsupervised clustering metho...
Autores principales: | Tian, Tian, Zhang, Jie, Lin, Xiang, Wei, Zhi, Hakonarson, Hakon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994574/ https://www.ncbi.nlm.nih.gov/pubmed/33767149 http://dx.doi.org/10.1038/s41467-021-22008-3 |
Ejemplares similares
-
Clustering of single-cell multi-omics data with a multimodal deep learning method
por: Lin, Xiang, et al.
Publicado: (2022) -
Complex hierarchical structures in single-cell genomics data unveiled by deep hyperbolic manifold learning
por: Tian, Tian, et al.
Publicado: (2023) -
A model-based constrained deep learning clustering approach for spatially resolved single-cell data
por: Lin, Xiang, et al.
Publicado: (2022) -
SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
por: Peng, Tao, et al.
Publicado: (2019) -
An active learning approach for clustering single-cell RNA-seq data
por: Lin, Xiang, et al.
Publicado: (2022)