Cargando…

Neurocognitive modeling of latent memory processes reveals reorganization of hippocampal-cortical circuits underlying learning and efficient strategies

Efficient memory-based problem-solving strategies are a cardinal feature of expertise across a wide range of cognitive domains in childhood. However, little is known about the neurocognitive mechanisms that underlie the acquisition of efficient memory-based problem-solving strategies. Here we develo...

Descripción completa

Detalles Bibliográficos
Autores principales: Supekar, Kaustubh, Chang, Hyesang, Mistry, Percy K., Iuculano, Teresa, Menon, Vinod
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994581/
https://www.ncbi.nlm.nih.gov/pubmed/33767350
http://dx.doi.org/10.1038/s42003-021-01872-1
Descripción
Sumario:Efficient memory-based problem-solving strategies are a cardinal feature of expertise across a wide range of cognitive domains in childhood. However, little is known about the neurocognitive mechanisms that underlie the acquisition of efficient memory-based problem-solving strategies. Here we develop, to the best of our knowledge, a novel neurocognitive process model of latent memory processes to investigate how cognitive training designed to improve children’s problem-solving skills alters brain network organization and leads to increased use and efficiency of memory retrieval-based strategies. We found that training increased both the use and efficiency of memory retrieval. Functional brain network analysis revealed training-induced changes in modular network organization, characterized by increase in network modules and reorganization of hippocampal-cortical circuits. Critically, training-related changes in modular network organization predicted performance gains, with emergent hippocampal, rather than parietal cortex, circuitry driving gains in efficiency of memory retrieval. Our findings elucidate a neurocognitive process model of brain network mechanisms that drive learning and gains in children’s efficient problem-solving strategies.