Cargando…
Neuronal-Plasticity and Reward-Propagation Improved Recurrent Spiking Neural Networks
Different types of dynamics and plasticity principles found through natural neural networks have been well-applied on Spiking neural networks (SNNs) because of their biologically-plausible efficient and robust computations compared to their counterpart deep neural networks (DNNs). Here, we further p...
Autores principales: | Jia, Shuncheng, Zhang, Tielin, Cheng, Xiang, Liu, Hongxing, Xu, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994752/ https://www.ncbi.nlm.nih.gov/pubmed/33776644 http://dx.doi.org/10.3389/fnins.2021.654786 |
Ejemplares similares
-
Explaining cocktail party effect and McGurk effect with a spiking neural network improved by Motif-topology
por: Jia, Shuncheng, et al.
Publicado: (2023) -
A brain-inspired algorithm that mitigates catastrophic forgetting of artificial and spiking neural networks with low computational cost
por: Zhang, Tielin, et al.
Publicado: (2023) -
Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks
por: Zhang, Tielin, et al.
Publicado: (2021) -
GLSNN: A Multi-Layer Spiking Neural Network Based on Global Feedback Alignment and Local STDP Plasticity
por: Zhao, Dongcheng, et al.
Publicado: (2020) -
Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks
por: Nallathambi, Abinand, et al.
Publicado: (2021)