Cargando…

The Availability of the α7-Nicotinic Acetylcholine Receptor in Early Identification of Vulnerable Atherosclerotic Plaques: A Study Using a Novel (18)F-Label Radioligand PET

Background: It has been confirmed that the α7-nicotinic acetylcholine receptor (α7nAChR) is an important target for identifying vulnerable atherosclerotic plaques. Previously, we successfully designed and synthesized a series of (18)F-labeled PET molecular probes targeting α7nAChR, which are mainly...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dawei, Yao, Yong, Wang, Shuxia, Zhang, Huabei, He, Zuo-Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994753/
https://www.ncbi.nlm.nih.gov/pubmed/33777911
http://dx.doi.org/10.3389/fbioe.2021.640037
_version_ 1783669820904964096
author Wang, Dawei
Yao, Yong
Wang, Shuxia
Zhang, Huabei
He, Zuo-Xiang
author_facet Wang, Dawei
Yao, Yong
Wang, Shuxia
Zhang, Huabei
He, Zuo-Xiang
author_sort Wang, Dawei
collection PubMed
description Background: It has been confirmed that the α7-nicotinic acetylcholine receptor (α7nAChR) is an important target for identifying vulnerable atherosclerotic plaques. Previously, we successfully designed and synthesized a series of (18)F-labeled PET molecular probes targeting α7nAChR, which are mainly used in the diagnosis of Alzheimer's disease. Based on the characteristics of α7nAChR in blood vessels, we have firstly screened for a suitable novel (18)F-labeled PET molecular probe ([(18)F]YLF-DW), with high selectivity for α7nAChR over α4β2nAChR and a good effect for the imaging of atherosclerotic animal models, to effectively identify vulnerable atherosclerotic plaques at an early stage. Meanwhile, we compared it with the “gold standard” pathological examination of atherosclerosis, to verify the reliability of [(18)F]YLF-DW in early diagnosis of atherosclerosis. Methods: The vulnerable atherosclerotic plaques model of ApoE-/-mice were successfully established. Then based on the methods of 3D-QSAR and molecular docking, we designed oxazolo[4,5-b] pyridines and fluorenone compounds, which are targeted at α7nAChR. Through further screening, a novel alpha7 nicotinic acetylcholine receptor radioligand ([(18)F]YLF-DW) was synthesized and automatically (18)F-labeled using a Stynthra RNplus module. Subsequently, we employed [(18)F]YLF-DW for the targeting of α7nAChR in atherosclerotic plaques and control group, using a micro-PET/CT respectively. After imaging, the mice were sacrificed by air embolism and the carotid arteries taken out for making circular sections. The paraffin embedded specimens were sectioned with 5 μm thickness and stained with oil red. After staining, immunohistochemistry experiment was carried out to verify the effect of micro-PET/CT imaging. Results: The micro-PET/CT imaging successfully identified the vulnerable atherosclerotic plaques in the carotid arteries of ApoE-/-mice; whereas, no signal was observed in normal control mice. In addition, compared with the traditional imaging agent [(18)F]FDG, [(18)F]YLF-DW had a significant effect on the early plaques imaging of carotid atherosclerosis. The results of oil red staining and immunohistochemistry also showed early formations of carotid plaques in ApoE-/-mice and provided pathological bases for the evaluation of imaging effect. Conclusion: We innovated to apply the novel molecular probe ([(18)F]YLF-DW) to the identification of vulnerable atherosclerotic plaques in carotid arteries, to detect atherosclerosis early inflammatory response and provide powerful input for the early diagnosis of atherosclerotic lesions, which may play an early warning role in cardiovascular acute events.
format Online
Article
Text
id pubmed-7994753
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79947532021-03-27 The Availability of the α7-Nicotinic Acetylcholine Receptor in Early Identification of Vulnerable Atherosclerotic Plaques: A Study Using a Novel (18)F-Label Radioligand PET Wang, Dawei Yao, Yong Wang, Shuxia Zhang, Huabei He, Zuo-Xiang Front Bioeng Biotechnol Bioengineering and Biotechnology Background: It has been confirmed that the α7-nicotinic acetylcholine receptor (α7nAChR) is an important target for identifying vulnerable atherosclerotic plaques. Previously, we successfully designed and synthesized a series of (18)F-labeled PET molecular probes targeting α7nAChR, which are mainly used in the diagnosis of Alzheimer's disease. Based on the characteristics of α7nAChR in blood vessels, we have firstly screened for a suitable novel (18)F-labeled PET molecular probe ([(18)F]YLF-DW), with high selectivity for α7nAChR over α4β2nAChR and a good effect for the imaging of atherosclerotic animal models, to effectively identify vulnerable atherosclerotic plaques at an early stage. Meanwhile, we compared it with the “gold standard” pathological examination of atherosclerosis, to verify the reliability of [(18)F]YLF-DW in early diagnosis of atherosclerosis. Methods: The vulnerable atherosclerotic plaques model of ApoE-/-mice were successfully established. Then based on the methods of 3D-QSAR and molecular docking, we designed oxazolo[4,5-b] pyridines and fluorenone compounds, which are targeted at α7nAChR. Through further screening, a novel alpha7 nicotinic acetylcholine receptor radioligand ([(18)F]YLF-DW) was synthesized and automatically (18)F-labeled using a Stynthra RNplus module. Subsequently, we employed [(18)F]YLF-DW for the targeting of α7nAChR in atherosclerotic plaques and control group, using a micro-PET/CT respectively. After imaging, the mice were sacrificed by air embolism and the carotid arteries taken out for making circular sections. The paraffin embedded specimens were sectioned with 5 μm thickness and stained with oil red. After staining, immunohistochemistry experiment was carried out to verify the effect of micro-PET/CT imaging. Results: The micro-PET/CT imaging successfully identified the vulnerable atherosclerotic plaques in the carotid arteries of ApoE-/-mice; whereas, no signal was observed in normal control mice. In addition, compared with the traditional imaging agent [(18)F]FDG, [(18)F]YLF-DW had a significant effect on the early plaques imaging of carotid atherosclerosis. The results of oil red staining and immunohistochemistry also showed early formations of carotid plaques in ApoE-/-mice and provided pathological bases for the evaluation of imaging effect. Conclusion: We innovated to apply the novel molecular probe ([(18)F]YLF-DW) to the identification of vulnerable atherosclerotic plaques in carotid arteries, to detect atherosclerosis early inflammatory response and provide powerful input for the early diagnosis of atherosclerotic lesions, which may play an early warning role in cardiovascular acute events. Frontiers Media S.A. 2021-03-12 /pmc/articles/PMC7994753/ /pubmed/33777911 http://dx.doi.org/10.3389/fbioe.2021.640037 Text en Copyright © 2021 Wang, Yao, Wang, Zhang and He. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Bioengineering and Biotechnology
Wang, Dawei
Yao, Yong
Wang, Shuxia
Zhang, Huabei
He, Zuo-Xiang
The Availability of the α7-Nicotinic Acetylcholine Receptor in Early Identification of Vulnerable Atherosclerotic Plaques: A Study Using a Novel (18)F-Label Radioligand PET
title The Availability of the α7-Nicotinic Acetylcholine Receptor in Early Identification of Vulnerable Atherosclerotic Plaques: A Study Using a Novel (18)F-Label Radioligand PET
title_full The Availability of the α7-Nicotinic Acetylcholine Receptor in Early Identification of Vulnerable Atherosclerotic Plaques: A Study Using a Novel (18)F-Label Radioligand PET
title_fullStr The Availability of the α7-Nicotinic Acetylcholine Receptor in Early Identification of Vulnerable Atherosclerotic Plaques: A Study Using a Novel (18)F-Label Radioligand PET
title_full_unstemmed The Availability of the α7-Nicotinic Acetylcholine Receptor in Early Identification of Vulnerable Atherosclerotic Plaques: A Study Using a Novel (18)F-Label Radioligand PET
title_short The Availability of the α7-Nicotinic Acetylcholine Receptor in Early Identification of Vulnerable Atherosclerotic Plaques: A Study Using a Novel (18)F-Label Radioligand PET
title_sort availability of the α7-nicotinic acetylcholine receptor in early identification of vulnerable atherosclerotic plaques: a study using a novel (18)f-label radioligand pet
topic Bioengineering and Biotechnology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994753/
https://www.ncbi.nlm.nih.gov/pubmed/33777911
http://dx.doi.org/10.3389/fbioe.2021.640037
work_keys_str_mv AT wangdawei theavailabilityofthea7nicotinicacetylcholinereceptorinearlyidentificationofvulnerableatheroscleroticplaquesastudyusinganovel18flabelradioligandpet
AT yaoyong theavailabilityofthea7nicotinicacetylcholinereceptorinearlyidentificationofvulnerableatheroscleroticplaquesastudyusinganovel18flabelradioligandpet
AT wangshuxia theavailabilityofthea7nicotinicacetylcholinereceptorinearlyidentificationofvulnerableatheroscleroticplaquesastudyusinganovel18flabelradioligandpet
AT zhanghuabei theavailabilityofthea7nicotinicacetylcholinereceptorinearlyidentificationofvulnerableatheroscleroticplaquesastudyusinganovel18flabelradioligandpet
AT hezuoxiang theavailabilityofthea7nicotinicacetylcholinereceptorinearlyidentificationofvulnerableatheroscleroticplaquesastudyusinganovel18flabelradioligandpet
AT wangdawei availabilityofthea7nicotinicacetylcholinereceptorinearlyidentificationofvulnerableatheroscleroticplaquesastudyusinganovel18flabelradioligandpet
AT yaoyong availabilityofthea7nicotinicacetylcholinereceptorinearlyidentificationofvulnerableatheroscleroticplaquesastudyusinganovel18flabelradioligandpet
AT wangshuxia availabilityofthea7nicotinicacetylcholinereceptorinearlyidentificationofvulnerableatheroscleroticplaquesastudyusinganovel18flabelradioligandpet
AT zhanghuabei availabilityofthea7nicotinicacetylcholinereceptorinearlyidentificationofvulnerableatheroscleroticplaquesastudyusinganovel18flabelradioligandpet
AT hezuoxiang availabilityofthea7nicotinicacetylcholinereceptorinearlyidentificationofvulnerableatheroscleroticplaquesastudyusinganovel18flabelradioligandpet