Cargando…
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
Computational decision support systems could provide clinical value in whole-body FDG-PET/CT workflows. However, limited availability of labeled data combined with the large size of PET/CT imaging exams make it challenging to apply existing supervised machine learning systems. Leveraging recent adva...
Autores principales: | Eyuboglu, Sabri, Angus, Geoffrey, Patel, Bhavik N., Pareek, Anuj, Davidzon, Guido, Long, Jin, Dunnmon, Jared, Lungren, Matthew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994797/ https://www.ncbi.nlm.nih.gov/pubmed/33767174 http://dx.doi.org/10.1038/s41467-021-22018-1 |
Ejemplares similares
-
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
por: Saab, Khaled, et al.
Publicado: (2020) -
Self-supervised learning for medical image classification: a systematic review and implementation guidelines
por: Huang, Shih-Cheng, et al.
Publicado: (2023) -
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
por: Fries, Jason A., et al.
Publicado: (2019) -
Cross-Modal Data Programming Enables Rapid Medical Machine Learning
por: Dunnmon, Jared A., et al.
Publicado: (2020) -
Practical Weak Supervision
por: Tok, Wee, et al.
Publicado: (2021)