Cargando…
Synthesis process optimization and field trials of insecticide candidate NKY-312
NKY-312 is a highly active insecticide candidate with a simple structure. In order to carry out field trials and toxicity tests, its scale preparation is urgently needed, but the final step of the original synthetic route is a low-yielding sulfonylation reaction that generates a high proportion of a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994830/ https://www.ncbi.nlm.nih.gov/pubmed/33767360 http://dx.doi.org/10.1038/s41598-021-86475-w |
Sumario: | NKY-312 is a highly active insecticide candidate with a simple structure. In order to carry out field trials and toxicity tests, its scale preparation is urgently needed, but the final step of the original synthetic route is a low-yielding sulfonylation reaction that generates a high proportion of a bissulfonylated by-product, its foliar contact activities against bean aphid (80% at 100 mg/kg) is significantly lower than that of NKY-312 (100% at 5 mg/kg), and uses pyridine as the solvent. In this work, we developed a highly selective (4-dimethylaminopyridine)-catalyzed monosulfonylation reaction that avoids the use of pyridine as a solvent and shows a much higher yield (98% yield with 98% HPLC purity) than the original reaction (68%). Then, we carried out the field trials and toxicity tests. In field experiments, the activities of NKY-312 against rice planthopper and wheat aphid were equal to pymetrozine and imidacloprid respectively. |
---|