Cargando…
Classification of unlabeled online media
This work investigates the ability to classify misinformation in online social media networks in a manner that avoids the need for ground truth labels. Rather than approach the classification problem as a task for humans or machine learning algorithms, this work leverages user–user and user–media (i...
Autores principales: | Prakash, Sakthi Kumar Arul, Tucker, Conrad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994853/ https://www.ncbi.nlm.nih.gov/pubmed/33767221 http://dx.doi.org/10.1038/s41598-021-85608-5 |
Ejemplares similares
-
Evaluation of biases in remote photoplethysmography methods
por: Dasari, Ananyananda, et al.
Publicado: (2021) -
Estimating classification accuracy in positive-unlabeled learning: characterization and correction strategies
por: Ramola, Rashika, et al.
Publicado: (2019) -
Target Tracking and Classification from Labeled and Unlabeled Data in Wireless Sensor Networks
por: Yoo, Jaehyun, et al.
Publicado: (2014) -
Efficient use of unlabeled data for protein sequence classification: a comparative study
por: Kuksa, Pavel, et al.
Publicado: (2009) -
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
por: Fries, Jason A., et al.
Publicado: (2019)