Cargando…

Extreme philopatry and genetic diversification at unprecedented scales in a seabird

Effective conservation requires maintenance of the processes underlying species divergence, as well as understanding species’ responses to episodic disturbances and long-term change. We explored genetic population structure at a previously unrecognized spatial scale in seabirds, focusing on fine-sca...

Descripción completa

Detalles Bibliográficos
Autores principales: Danckwerts, D. K., Humeau, L., Pinet, P., McQuaid, C. D., Le Corre, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994906/
https://www.ncbi.nlm.nih.gov/pubmed/33767313
http://dx.doi.org/10.1038/s41598-021-86406-9
Descripción
Sumario:Effective conservation requires maintenance of the processes underlying species divergence, as well as understanding species’ responses to episodic disturbances and long-term change. We explored genetic population structure at a previously unrecognized spatial scale in seabirds, focusing on fine-scale isolation between colonies, and identified two distinct genetic clusters of Barau’s Petrels (Pterodroma baraui) on Réunion Island (Indian Ocean) corresponding to the sampled breeding colonies separated by 5 km. This unexpected result was supported by long-term banding and was clearly linked to the species’ extreme philopatric tendencies, emphasizing the importance of philopatry as an intrinsic barrier to gene flow. This implies that loss of a single colony could result in the loss of genetic variation, impairing the species’ ability to adapt to threats in the long term. We anticipate that these findings will have a pivotal influence on seabird research and population management, focusing attention below the species level of taxonomic organization.